
School of Linux

88 LXF142 March 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

Part one on the DVD

You press the power button on your PC. A bunch of
messages scroll by, or perhaps a flashy animation if
you’re using a desktop-oriented distro, and finally you

arrive at a login prompt. What exactly happens in the mean
time? That’s what we’ll be explaining in this instalment of our
School of Linux series. Like last month, which focused on
identifying and managing hardware on your Linux system,
this tutorial will help you prepare for Linux Professional
Institute (LPI) certification. So it’s useful if you want to get a

The Mike Saunders

Part 2: After last month’s foray into the
world of hardware, in this class we’ll prep
your Linux skills with a detailed look at the
boot process. Oh, and spit out that gum!

The Linux boot process is an intricate collection of processes
and scripts that turn your PC, initially nothing more than a
lump of cold metal, into a powerful workstation or server.
Let’s go through the key steps in order.

BIOS
The BIOS (Basic Input/Output System) is a small program
that lives in a chip on your motherboard. When you hit your
PC’s power button, the CPU starts executing BIOS code.
You’ve no doubt seen the ‘Hit F2 for setup’ messages that
appear when your system starts, providing you with access to
the BIOS for changing settings such as the disk drive boot
order. Typically, the BIOS performs a quick check of your
hardware – making sure the RAM chips are working, for
example – and then tries to find a bootloader. It attempts to
load the first 512 bytes from a floppy drive or hard drive into
RAM and, if this works, executes the contents.

Bootloader
So the BIOS has handed over control to the first part of the
OS: the half-kilobyte bootloader. Back in the 1980s, such a
tiny amount of memory was fine for loading an OS kernel.

However, modern bootloaders must support many different
filesystems, OSes and graphics modes, so 512 bytes isn’t
enough. In the case of Grub, as used by most Linux distros,
the half-k loader then loads another program called Stage 1.5.

This is a slightly larger bootloader that’s located towards
the start of the drive so that it can be found easily. It then
loads Grub Stage 2, a fully fledged bootloader that provides
all of the features you’re used to. Grub reads a configuration
file, loads the Linux kernel into RAM and starts executing it.

Linux kernel and Init
When the very first bytes of the Linux kernel begin executing,
it’s like a newborn, unaware of the outside world of your
system. First, it tries to work out what processor and features
are available, sees how much RAM is installed and gets an
overall picture of the system. It can then allocate itself a safe
place in memory – so that other programs can’t overwrite it
and cause spectacular crashes – and starts enabling features
such as hardware drivers, networking protocols and so forth.

Once the kernel has done everything it needs to, it’s time
to hand control over to userland: the place where programs
are run. The kernel isn’t interested in running Bash, Gdm, and

Section 1: From power up to desktop

job in the Linux world, or even if you just want to learn a bit
more about your operating system.

Linux certification avoids whizz-bang, rapidly updated
distros and teaches skills applicable to the more stable,
enterprise-friendly flavours such as Red Hat Enterprise Linux
(RHEL), CentOS and Debian. We used CentOS for last
month’s guide – this time it’s the turn of Debian (version 5).
While distros vary in the way they implement certain features,
much here will be applicable across the board.

LXF142.tut_lpi 88 1/17/11 5:18:57 PM

School of Linux School of Linux

www.tuxradar.com March 2011 LXF142     89

so on directly, so it runs a single master program: /sbin/init.
This is the first proper process on the system. Init is
responsible for starting the boot scripts that get the system
running, but needs to know what to run. The main config file
for init is /etc/inittab, a plain text file you can edit.

This file is based around a concept called runlevels – the
different running states the system can be in, such as single
user, multiuser and shutting down. We’ll cover these later, but
for now you need to know that /etc/inittab tells init to run
the /etc/init.d/rc script, with the runlevel as a parameter.

This script calls other scripts to set up various parts of the
system – to establish a network connection, start system
loggers and, on a desktop machine, launch the X Window
System and login manager. Once you’ve given your details,
the login manager launches your desktop or window manager
of choice and you’re ready to go. This entire process – from
power button to clicking icons – involves a lot of work, but is
generally well-shielded from the user.

Now let’s look at the bootloader in more detail. In most cases,
this will be Grub, a powerful program that can launch a range
of OSes and enables you to make configuration changes at
startup. We’re going to cover Grub’s configuration files and
related utilities in a future tutorial – for now, we’ll focus on
making changes at boot time on our Debian installation.

When Grub appears, just after the BIOS screen, you’re
given a list of boot options. You can hit Enter to start one of
these, but you can edit them in place as well. Select the entry
you want to edit and hit E. After this, you’ll be taken to another
screen with three lines that look like the following:

Last month We got to grips with hardware listing and driver modules.

Section 2: Editing Grub settings

 Want to see
how much time
is being spent
by your boot
scripts? Get
a graphical
representation
with Bootchart
(it’s in most
distros’ package
repositories).

 Grub is a hugely flexible bootloader. With a tap of E, you
can edit its options before starting the boot sequence.

root (hd0,0)
kernel /boot/vmlinuz-2.6.26-2-686 root=/dev/hda1 ro quiet
initrd /boot/initrd.img-2.6.26-2-686

Have a look at the second line. This tells Grub where to
find the Linux kernel, and what options to pass over to it. In
this case, we tell the kernel where the root partition (/) device
is, then ro says the partition should be mounted as read-only.
This is so that filesystem checks can be run if needed – but it
will be remounted as read-write shortly after. Meanwhile,
quiet tells the kernel that we don’t want it to spit out lots of
messages, making the boot cleaner and easier to follow.

We can modify these options by using the Down cursor
key to select that second line and hitting E again. The screen
will switch to a plain editing mode, where you can add and
remove options. The cursor keys move around in the line. So
let’s try something: after quiet, add a single s (with a space
separating them). What we’re doing is specifying the runlevel
we want the kernel to boot in – s means single user.

Hit Enter to return to the Grub screen, then press B to
start the boot process. Since we’re booting into single user
mode, the normal process stops after the kernel’s initialised
and mounted the root partition, and you’ll be asked for the
root user password. Provide it and you’ll enter a prompt. This
is a limited mode of operation, but handy for sorting boot
problems – you can edit and fix scripts unhindered.

Booting into the future
Traditionally, Linux (and Unix) boot scripts have
run sequentially – that is, one follows the other.
This is simple, and guarantees that certain bits
of hardware and features will be enabled by
certain points in the boot process. However, it’s
an inefficient way of doing things and leads to
long bootup times, especially on older hardware.
Much of the time, the scripts are waiting for
something to happen: for a piece of hardware to
activate itself, or for a DHCP server on the
network to send a lease, for instance.

Wouldn’t it be great if other things could be
done in the delays? That’s the aim of parallelised
init scripts. While your network script is waiting
for DHCP, another script can clean /tmp or
start up the X Window System. You can’t just put
ampersands on the end of every script call and
run them all in parallel, though; some scripts
depend on certain facilities being available. For
instance, a boot script that gets an IP address
via DHCP needs to assume that networking’s
already been enabled by another script.

InitNG is a parallelised boot system in which
scripts have dependencies to sort out their
order. Upstart, as used by Ubuntu, starts scripts
based on system events, such as when a
hardware device is detected. Then there’s
System D (due to be in Fedora 15) and other
approaches. For the sake of documenters and
administrators, let’s hope the Linux world will
eventually settle on one system, but in any case
the move towards parallelisation is hugely
speeding up the Linux boot process.

LXF142.tut_lpi 89 1/17/11 5:18:57 PM

School of Linux

90     LXF142 March 2011 www.linuxformat.com

School of Linux

With the aforementioned quiet option and the overall speed
of modern PCs, it’s quite possible that the photons from the
boot messages will barely have time to reach your retinas
before the boot process is finished. Fortunately, then, we can
read them in peace once the system is fully up and running.
Look in the file /var/log/messages (you’ll need to be root to
view this) and you’ll see everything generated by the kernel,
right from the moment it begins execution. However, since
the kernel is trying to find out what hardware it lives in, it’s
sometimes surprised by what it finds, so don’t panic if you
see entertaining warning messages such as ‘warning: strange,
CPU MTRRs all blank?’.

Kernel Saunders explains
Roughly, the order in which the kernel works is like this,
although there’s some overlap:

 �Get hardware information from the BIOS (note that this is
not always reliable).
 �Find out how many CPUs/cores there are, and learn of any
CPU features.
 �Get ACPI information and probe the PCI bus for devices.
 �Initialise the TCP/IP networking stack.
 �Look for hard, floppy and CD-ROM drives.
 �Probe for USB controllers and connected devices.

Once the kernel is happy with the state of the system, it
mounts the root filesystem and runs /sbin/init, as described
before. While /var/log/messages is a valuable resource for
finding out what the kernel has done since it booted, it can

Earlier, we mentioned runlevels, which play a massively
important role in the workings of your Linux installation, even
if you’ve never heard of them. A runlevel defines a state for
your system – specifically, which processes are running and
which resources are available. It’s not some secret, inner-
kernel black magic, but merely a system whereby /sbin/init
runs scripts to turn functionality on and off. There are eight
runlevels, seven of them with numbers:

 �0 Halt the system. This is the runlevel that the machine
enters when it shuts down. Switching to this runlevel starts
scripts to end processes and cleanly halt the system.
 �1 Single user mode. Normal user logins are not allowed.
 �2 to 5 Multiuser mode. These are all the same in a Debian
installation, so you can customise one of them if you need

A security note:
anyone with access
to your machine
can reboot it
and play around
with the Grub
options, no matter
how secure the
OS is. In a later
tutorial, when
we cover Grub’s
configuration file,
we’ll show you how
to password protect
the bootloader to
stop such nefarious
antics happening.

Quick
tip

Never miss another issue Subscribe to the #1 source for Linux on page 102.

Section 3: Viewing log files

Section 4: Runlevels and the magic of /etc/init.d/

become cluttered with lines from other programs as well. For
instance, on our installation many lines include debian:, but
there are others with dhcbd and the like.

If you want to get a kernel-only list of messages, run the
dmesg command. (You can redirect this into a text file for
easier reading with dmesg > listing.txt.) While most of the
messages contained therein will be from the early parts of the
boot process, this information will be updated if you plug in
new hardware. Add a USB flash key and then run the
command, for instance, and you’ll see new lines describing
how the kernel detected the device.

to. This is the normal mode of operation, allowing multiple
users to log in, with all features enabled.
 �6 Reboot. Very similar to runlevel 0.

Then there’s runlevel S, for single user mode, which we
enabled before when editing Grub’s boot parameters. This is
quite similar to runlevel 1, but there are subtle differences: S is
the runlevel you use when booting the system and you need
to be in a safe recovery mode. In contrast, you use runlevel 1
when the system is already running and you need to switch to
a single user mode to do some maintenance work. Don’t
worry, though – already logged-in users won’t be kicked off.

Although runlevels 2 to 5 are identical on Debian, in some
other distros there are specific runlevels in this range. For
instance, many distros use runlevel 3 for a multiuser, text-

Alerting users to runlevel changes
Changing runlevels on a single-user machine is
no problem – you’re already prepared for it. But
what about on a multiuser machine? What if you
have other users logged in via SSH and running
programs? They don’t want everything to
disappear from under their feet in an instant.
Fortunately, there are a couple of ways you can
alert them about the changes to come. First, if
you log in as root and enter wall, you can type a

message and hit Ctrl+D to finish. This message
will then be displayed on the terminals of every
currently logged-in user. So you could, for
instance, broadcast, “Shutdown in 10 minutes.”
Normal users can run wall too, but they can also
disable messages from other normal users with
the mesg command.

An alternative way to contact users in order
to alert them is to mail them. This is similarly

simple and can be done in a single command,
such as the following:
echo “Reboot in 10 minutes” | mail -s “Reboot
notice” user@localhost

If the users are running an email notification
tool, they’ll see the new message immediately. If
you’ve got a big installation, with hundreds of
logged-in users, you’ll want to give several hours
rather than minutes of advance notice.

 Try gnome-system-log or KDE’s Ksystemlog for a slightly
more attractive view of your log messages.

LXF142.tut_lpi 90 1/17/11 5:18:58 PM

School of Linux School of Linux

www.tuxradar.com March 2011 LXF142     91

Shutting down the system safely
In the desktop operating systems of the 1980s,
you normally had no special process to shut
down the computer – you just hit the power
button when you were done with your work. This
was fine back then, but on today’s machines it
can be very risky for two reasons. Firstly, some
operating systems, including Linux, don’t
immediately write data to drives when you save
a file. They wait until other processes want to

save data, then bundle it all together in one big
write operation in order to improve
performance. You can, however, force Linux to
write all data stored in its RAM buffers to disk
with the sync command.

Secondly, Linux startup scripts also have
shutdown equivalents, which make sure
processes end safely, temporary files are
cleaned up and so forth. Don’t worry too much,

it’s not a massive crisis if they’re not run, but it
does help to keep your system in a tidy state.
Most of us shut down via widgets on our
desktop, but if you’d rather do this via the
command line, have a look at the manual pages
for shutdown, halt and reboot. With shutdown,
for instance, you can specify a delay, but the
most common command to power off a
machine immediately is shutdown -h now.

Next month We delve into the filesystem layout and shared libraries.

mode login setup, and runlevel 5 for a graphical login (such as
Xdm/Gdm/Kdm). To find out which runlevel you’re currently
using, run /sbin/runlevel. To switch to another runlevel, use
the /sbin/telinit command, as root, like this:
/sbin/telinit 2

Now how do you find out which runlevel your distro runs
by default? The magic here lies in the /etc/inittab file.
Towards the top, you’ll see lines like this:
The default runlevel.
id:2:initdefault:

Lines beginning with hash marks are comments, while the
lower line tells init that runlevel 2 is to be the default. If you
create your own custom runlevel using the scripts for runlevel
3 and want to boot into it all the time, you can simply edit this
file as root, change the number and restart your machine.

Slightly further down in /etc/inittab, you’ll see a bunch of
lines like the following:
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
...

These will continue all the way to 6. These tell init what to
do in each runlevel: run the script /etc/init.d/rc with the
number of the runlevel as a parameter. Then /etc/init.d/rc
will work out which scripts it needs to execute for the current
runlevel. These are neatly organised in numbered directories
inside /etc. So you’ll find /etc/rc0.d, /etc/rc1.d and so on.

Inside a runlevel
Let’s have a look inside /etc/rc2.d for the default Debian
runlevel. Inside, you’ll find a bunch of scripts with filenames
such as S05loadcpufreq and S89cron. Each of these scripts
enables a specific functionality in your Linux installation –
have a look inside one and you’ll see a description comment
describing exactly what it does.

So we have S30gdm, which starts the Gnome Display
Manager. What do the first three characters mean, though? S
denotes that it’s a script to start something and 30 gives it a
position in the boot order. You can see that each script has a
number like this and they’re executed in numeric order. In this
way, important scripts such as S10rsyslog are executed early
on (to enable logging), while more trivial features such as
Cron (S89cron) are enabled towards the end of the runlevel.

If you look carefully with ls -l, though, these scripts aren’t
actually unique files, but symbolic links to scripts in /etc/
init.d – that’s where the real scripts live. This is because
scripts can be shared across runlevels. You might want to
change the way Cron starts, for instance, so by editing /etc/
init.d/cron you can make your modifications active across all

runlevels that use it. You can have a look inside /etc/init.d to
see what’s available.

These scripts are carefully written wrappers around the
programs after which they’re named. For instance, /etc/
init.d/gdm isn’t just a single-line text file containing gdm;
rather, it sets up necessary environmental variables, adds
messages to log files and so on. In a Debian system, most of
these scripts can be called with parameters. For instance, run
/etc/init.d/gdm and you’ll see a line like this:
Usage: /etc/init.d/gdm {start|stop|restart|reload|force-
reload|status}

So you can run /etc/init.d/gdm start to get Gdm going,
and /etc/init.d/gdm stop to halt it. Note that restart does a
stop and start, whereas reload asks the program to reread its
configuration files without actually stopping, if this is possible.
You can freely use these scripts outside of the whole runlevel
system – for instance, to restart Exim or Apache after you’ve
made changes to their configuration files.

Lastly, let’s make a quick mention of something else in
/etc/inittab, which isn’t related to runlevels but is useful
nonetheless. Have you ever wondered where the text
terminals at bootup come from? The ones you can switch to
with Ctrl+Alt+Fx from the X server? These are defined
towards the bottom of /etc/inittab with lines like this:
2:23:respawn:/sbin/getty 38400 tty2

The /sbin/getty 38400 tty2 part is simply a command
to run a login prompt on the second virtual terminal. You can
replace this with anything, so you could even have a virtual
terminal devoted to Tetris! Meanwhile, respawn means that it
restarts every time it quits. It’s fun to play around with, but be
careful – if you make it run a program that hogs all keyboard
input, you won’t be able to switch to another terminal to kill it.
Still, it’s not brown trouser time – just reboot into single user
mode and revert your edits. LXF

 Each runlevel
has a directory
(/etc/rcX.d)
with symbolic
links to scripts in
/etc/init.d.

LXF142.tut_lpi 91 1/17/11 5:18:58 PM

