
62 Linux Format December 2008

Dr Brown’s Administeria

L
ast week I taught a Linux security

class. The group was a typical

mixture of folks who had an

adequate background in driving Linux

and folks who, well… didn’t. A snatch of

conversation during a lab exercise

might go something like this:

Me: “Could you check the permissions

on the log file?”

Student (after a long pause): “How do I

do that?”

Me: “Well, you could try ls -l.”

Student: “OK, but how was I supposed

to know?”

Then there are the guys who’ve only

allocated six minutes of their entire lives

to learn Vi. They don’t think that editors

should need to be learned and don’t see

why Vi should be any different. So they

never get the thing out of first gear. Or

they’ll copy the file on to a memory

stick, edit it on Windows with Notepad

and copy it back. (Sadly, I’m not making

this up!) And some of them have been

wasting time like this for years. They

can type grep commands under

supervision, but would never think of

using it as a problem-solving tool, and

couldn’t design a regular expression if

their life depended on it.

Class act
And then there’s the ‘let’s not rush into

this’ brigade, who’ll type in a command

then sit and admire it awhile, waiting for

it to mature, perhaps, before entrusting

it to the tender mercies of the shell by

actually pressing Enter.

Am I being a little cruel? Maybe. But if

I applied for a job building circuit boards

and picked up the soldering iron at the

wrong end, or turned up at your quilting

class and couldn’t thread a needle,

you’d probably send me away. If you

come to my security class and can’t tell

a SIGHUP from an inode, you’ll probably

get to stay. But expect a hard week!

A
nyone who’d like to be able to securely

administer their Linux servers from,

say, Margate beach (and who

wouldn’t?) might be interested in a piece of

software called TouchTerm, which is basically

an SSH client and terminal emulator for the

Apple iPhone.

TouchTerm includes a direct port of the

OpenSSL and OpenSSH software to the

iPhone and offers RSA/DSA key-based

authentication and public key distribution via

email. It also includes an emulator for a VT100

terminal, giving you a standard command line

interface and even enabling curses-based

programs such as Vi and Top to be used. (The

VT100, for those of you too young to

remember, was a character-based terminal

made by Digital Equipment Corporation, which

was popular around 1980. The control

sequences of ASCII characters that the VT100

used for things such as cursor positioning

became something of a de facto standard and

is often supported by terminal emulators.)

I’ve included a screenshot that gives just a

glimpse of the user interface; there are

additional screens for SSH key management

and for editing server connections. (Once

you’ve defined a connection you can connect

with a single tap.)

Find out more at www.jbrink.net. You can

download TouchTerm from the iTunes App

Store for the princely sum of $2.99.

Esoteric system administration goodness from
the impenetrable bowels of the server room.

Dr Brown’s
Administeria

Sorting the men
from the boys

Toys for the boys
Want to reformat your server’s hard drive from your
iPhone? Here’s how it’s done…

 TouchTerm, shown in immediate mode. Characters

are sent to the server as you type them. Buffered

entry modes, supporting local editing of command

lines, are also available.

Dr Chris Brown

The Doctor provides Linux training, authoring and
consultancy. He finds his PhD in particle physics
to be of no help in this work at all.

LXF112.sysadmin Sec2:62 29/9/08 7:23:43 pm

December 2008 Linux Format 63

Dr Brown’s Administeria

Y
ou know about basic file permissions, right? The good ol’

‘read, write, execute’ for ‘owner, group and other’. Of

course you do! So, if we have a file like this:

$ ls -l foo

-rw-r----- 1 chris student 1550 2008-08-21 15:05 foo

We can see that chris can read and write the file, members of

the student group can read it and others have no access. But what

about this one?

$ ls -l foo

-r--rw---- 1 chris student 1550 2008-08-21 15:05 foo

Assuming chris is a member of the student group, can he write

to the file? If I ask this in class, my students are typically split three

ways, between yes, no and ‘I’m not going to risk embarrassment

by expressing a possibly incorrect opinion’. The correct answer is

no. Since chris owns the file, he sees the first three permission

bits. End of story. Linux doesn’t go on to say: “Aha, but chris is a

member of the student group, so he can write the file.” In practice,

the question rarely arises – you hardly ever see permissions that

become less restrictive as you move from left to right.

Based on the same file permissions, the next question is: Can

chris delete the file? In class, after I’ve convinced everyone that

chris can’t write to the file, most students decide he can’t delete it

either. In fact, chris probably can delete the file; it depends entirely

on whether he has write permission on the directory he’s trying to

delete it from. That’s right – you don’t need write permission on a

file to delete it, you only need write permission on the directory.

What about execute permission? In the case of a fully-

compiled binary file, such as those you’ll find in /usr/bin, execute

permission means you’re allowed to run the command. Execute

and read permission are entirely separate, and in this case you

don’t need read permission on the file to execute it. For a script,

however, the waters are slightly murkier. Suppose I have a shell

script called demo. If I have read permission, there are a couple of

ways I can run it. First, I can explicitly invoke a new shell and tell it

to take the file demo as input, like this:

$ sh demo

Second, I can tell the current shell to execute the commands in

the script using the shell’s built-in source command, like this:

$ source demo

$. demo # . is a shorthand for source

For both of these, I only need read (not execute) permission on

the script. It’s also possible to arrange to run the script as if it were

a command, by just typing its name like this:

$./demo

The joy of RWX
The Doctor reviews file permissions and answers questions no one thinks to ask.

In this case, a new shell is automatically invoked to run the

script. For this to work I need read and execute permission;

execute permission alone isn’t sufficient.

Another area that causes confusion is what the permissions

mean when applied to a directory. The difference between read

and execute permissions on a directory are well defined but subtle.

If I have read permission on a directory but not execute

permission, I can list the contents of a directory but not cd into it.

If I have execute permission but not read permission, I can cd into

the directory but not list its contents, although surprisingly I can

access a file by name. The message is: to have sane access to a

directory, you need both read and execute permission. It doesn’t

make sense to have one without the other and, as far as I can tell,

no Linux directories have these combinations of permissions.

The sticky bit
Finally, a mention of the ‘sticky bit’. This flag originated in Unix in

the mid 70s. When set, it told the kernel to keep the code segment

of the program in swap space after the process ended. This

speeded subsequent executions by enabling the kernel to make a

single operation of moving the program from swap space into

memory. Thus, frequently used programs such as editors would

load noticeably faster. Although it was a good idea at the time, no

current versions of Unix honour the sticky bit on regular files and

Linux never has. But it does have an important meaning for

directories: it changes the rules about who can delete files. If the

sticky bit is set on a directory, files within it can be deleted only by

their owner, the directory’s owner or the superuser.

 The output

from ls -l foo

(well, most of it)

and what it all

means.

I’d love to be able to offer you some book

reviews, but the market for Linux system

administration books is very quiet at the

moment. Before the technical book

industry fell into decline (starting around

2001), people were buying a lot more

books and you could publish on anything.

These days, publishers have to go for

topics with a bigger audience in order to

avoid losing money on the title. Almost by

definition, system administrators are

significantly less numerous than end

users, and publishers are unwilling to take

the risk. There are exceptions to this –

niche audiences that are more enthusiastic

about buying books (known in the trade as

their ‘attach rate’) – and occasionally a

publisher will take a chance on something

unusual and do well, but most of the more

specialist topics simply won’t sustain a

book in the present economic climate. I

guess that the 800-page tome I was

planning about porting Linux to your

microwave will just have to wait.

Linux in print

Read permission. Can examine the
file, make a copy of it, compile it etc.

Write permission. Can edit the file,
copy over it, truncate it etc.

Execute permission. Can run the
program or script as a command.

The file’s owner. By default, this
is whoever created the file.

Size and timestamp
info omitted.

The file’s group. By default, this is the
primary group of whoever created the file.

The file’s name.

Permissions for everyone else.

Permissions for members
of the file’s group (staff).

Permissions for the file’s
owner (chris).

-rwx r-x --- 1 chris staff ... foo

LXF112.sysadmin Sec2:63 29/9/08 7:23:49 pm

64 Linux Format December 2008

Dr Brown’s Administeria

Leaving an audit trail
Sudo and auditctl Armed with Fedora 9 and a large bag of breadcrumbs,
we examine a couple of ways to provide a record of system admin activity.

P
roviding a permanent record of a system administrator’s

actions – a list of what was done (and when, and who by)

– can be invaluable when your system has got into a

muddle and you’d like to know who to blame, or if you’re garnering

evidence of a break-in. In some companies, audit trails are a

mandatory part of the security policy. Here, I’ll suggest a couple of

ways of ensuring that any significant system admin activity leaves

behind some sort of permanent record in the log files.

The first approach is to prevent direct root logins and force all

rootly activity to be performed using the sudo command. If sudo

is appropriately configured, this will result in every command that

root executes being logged – typically to /var/log/secure.

To prevent a complete free-for-all, we’ll restrict this use of sudo

to members of one specific group called ‘wheel’. So, to begin, we

need to configure sudo to say that members of the wheel group

can run anything as root. The required line in the sudoers file is:

%wheel ALL=(ALL) ALL

You may find that the line is already there and simply needs

‘commenting in’. Next, make at least one user a member of the

wheel group. I added the user ‘chris’ to the group, like this:

usermod -G wheel chris

Now I can log in as chris and use sudo to run single commands

with root privilege, like this:

$ sudo /usr/sbin/useradd ellie

[sudo] password for chris:

In this example, I’m adding a user account. The password I’m

prompted for is my own password, not the root password.

When you’re sure this is working (and not before!) you can

disable direct root login by locking the root password:

$ sudo passwd -l root

Locking password for user root.

passwd: Success

Now, root can’t log in. You can’t even use su to become root.

You must do everything through sudo. (Ubuntu users will be aware

that Ubuntu is set up this way by default.) While this arrangement

can be irritating at times, there are some significant benefits. First,

it forces you to say, very explicitly: “I need to do this as root.”

Second, it minimises the amount of time you spend running

commands with root privilege. Third, sudo will log all the

commands it executes. As an example, suppose I need to edit my

Apache configuration. I would have to do it like this:

$ sudo vi /etc/httpd/conf/httpd.conf

resulting in the following line being written to /var/log/secure:

Aug 18 11:51:54 fedora9 sudo: chris : TTY=pts/2 ; PWD=/etc/

httpd/conf ; USER=root ; COMMAND=/bin/vi /etc/httpd/conf/

httpd.conf

So, now we know who edited httpd.conf and when, and which

terminal they were logged in on.

If you’d like much finer control over auditing, you might want to

experiment with the auditing system built into the kernel itself.

Using this system, you can set a ‘watch’ on any file in the

filesystem and log any operation that reads, writes, executes or

changes the permissions of the file. You can audit every system

call made by a specified process or user, or (for example) record

every open() operation on a file that fails. You can use this system

to detect misconduct by unauthorised users or to gain evidence of

violations of your security policy.

If you liked that, you’ll love this
Suppose we’ve noticed that someone is performing port scans of

the machines on our local network. We have the port-scanning tool

Nmap installed; the question is, is anyone using it? Using auditctl

we ask the kernel to audit any attempt to execute Nmap, like this:

auditctl -w /usr/bin/nmap -p x -k port-scan

Let’s dissect this command. The arguments -w /usr/bin/

nmap specify the file on which we want to set a watch. We can’t

use wildcards here, just simple filenames. The arguments -p x

specifies the kind of activity we want to log – some combination of

r (read), w (write), x (execute) or a (attribute change). Finally, the

arguments -k port-scan specify a filter key (an arbitrary text

string) that will be included in the event log and can be searched

on by ausearch or, of course, good ol’ grep.

Later, we check the audit log by asking ausearch to show us

those logged entries that contain our keyword port-scan:

ausearch -k port-scan

Don’t try this at home!

Don’t lock the root password until you’re absolutely certain that

there’s at least one user account that can use sudo to run

commands as root, or you’re certified to perform mouth-to-

mouth resuscitation. It would also help to have a fire

extinguisher handy and to know how to perform (say) a rescue

boot from a Live CD.

Another way in which you can restrict the

use of sudo to the wheel group is by

careful setting of the sudo executable’s

group ownership and execute permissions,

like this:

chown root:wheel /usr/bin/sudo

chmod 4110 /usr/bin/sudo

ls -l /usr/bin/sudo

---s--x--- 2 root wheel 148836 2008-03-31

15:13 /usr/bin/sudo

Note the unusual 4110 mode. The

program runs setuid to root, and is

executable by root and members of the

wheel group. This is much more restrictive

than simply putting the line

%wheel ALL=(ALL) ALL

into the sudoers file, because it entirely

prevents you from using sudo in order to

provide privilege escalation to non-wheel-

group members.

Belt and braces

Component Description

The kernel
The kernel generates audit events according to a specified set

of event rules.

auditctl

This user-space program loads event-matching rules into
the kernel. In a sense, it’s a bit like iptables, which loads packet-

filtering rules into the kernel. At boot time, the startup script
for the auditd daemon runs auditctl to load an initial rule set

from the file /etc/audit/audit.rules.

auditd
This daemon captures the event audit output from the kernel and
writes it to a log file. The daemon can also manage rotation of the
log files. The config file for the daemon is /etc/audit/auditd.conf.

aureport
A utility that’s used for producing human-readable summary

reports of the audit logs. It has lots of flags that control the type of
audited event and the timeframe of events of interest.

ausearch
A utility that displays detailed audit records. This tool also has

many options for selecting the events of interest.

 The main

components

of the auditing

system are

shown in the

table below.

LXF112.sysadmin Sec2:64 29/9/08 7:23:49 pm

December 2008 Linux Format 65

Dr Brown’s Administeria

time->Mon Aug 18 21:15:42 2008

type=PATH msg=audit(1219072542.201:117): item=1 name=(null)

inode=354635 dev=fd:00 mode=0100755 ouid=0 ogid=0

rdev=00:00 obj=system_u:object_r:ld_so_t:s0

type=PATH msg=audit(1219072542.201:117): item=0 name=”/usr/

bin/nmap” inode=33539 dev=fd:00 mode=0100755 ouid=0 ogid=0

rdev=00:00 obj=system_u:object_r:traceroute_exec_t:s0

type=CWD msg=audit(1219072542.201:117): cwd=”/home/ellie”

type=EXECVE msg=audit(1219072542.201:117): argc=2

a0=”nmap” a1=”192.168.0.1-20”

type=SYSCALL msg=audit(1219072542.201:117): arch=40000003

syscall=11 success=yes exit=0 a0=83096e0 a1=83079d8

a2=830fd48 a3=0 items=2 ppid=2766 pid=2790 auid=0 uid=501

gid=501 euid=501 suid=501 fsuid=501 egid=501 sgid=501

fsgid=501 tty=pts2 ses=10 comm=”nmap” exe=”/usr/bin/nmap”

subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

key=”port-scan”

All of this output resulted from a single invocation of Nmap. If

you look carefully you’ll see that the user ID 501 ran the command

nmap 192.168.0.1-20 at 9.15 pm on Monday August 18. A check

for UID 501 in the password file reveals that the culprit is ellie, the

scallywag we created an account for earlier in the tutorial.

The auditctl command does for auditing what the iptables

command does for packet filtering – it loads rules into the kernel.

Its command syntax defines a sort of language for auditing rules,

just as the command syntax of iptables defines a language for

packet-filtering rules. To present a slightly more complex example,

let’s create an audit rule that will log all of user ellie’s unsuccessful

attempts to open a file. The rule might look like this:

auditctl -a exit,always -S open -F uid=501 -F success=0

Let’s dissect the rule again. We’re appending (-a) a rule to the

exit system call list. This list is used upon exit from a system call to

determine if an audit event should be created. We’re selecting the

open system call for auditing. (This is the system call a program

must use in order to gain access to the data in a file.) And we’re

auditing only those events for which the user ID is 501 (ellie’s

account) and the system call wasn’t successful. There are many

more conditions we could filter on in this way; the real or effective

user and group IDs, the exit code of the system call, the inode

number of the file being accessed, the process ID and so on.

Some time later, we can examine the audit log. Here, we ask

aureport to show us failed file-related events:

#aureport -f

...

14. 19/08/08 18:47:58 /etc/passwd 5 no /bin/cp 0 310

...

I’ve removed many lines from aureport’s output to focus on

one of interest. At 6.47 pm on August 19, someone failed to open

the file /etc/passwd using the program /bin/cp. At the end of

What if?

What if lawyers applied their accumulated

wisdom to the C language? We’d have

ended up with LEGOL, of course, but it

would’ve been a very different language.

For example, the C statement:

int i = 1;

translates to LEGOL as:

“Be it understood and acknowleged by

those present that the newly created

object is herewith to be named and

referred to as ‘i’ within the scope

determined by the preferred embodiment

of the previously submitted namespace

patent hereby incorporated by reference

and further that ‘i’ being of the type

declared known and widely recognised as

integer it shall straightway without let or

hindrance be assigned and alloted the

value 1 (ONE) and shall retain that value

until such time or times if any that some

other value within the jurisdiction of the

Type Safety (Promotions) Act may be

assigned and allotted thereto.”

I leave it as an exercise for the reader

to translate

x += *p++;

into LEGOL.

Here’s another worrying thought. What

if Bjarne Stroustrup had decided to start

with COBOL, not C? We’d now all be

writing in POSTFIX INCREMENT COBOL

BY ONE. And if you subscribe to the theory

that C# is really C++++, the .NET folks

would presumably be coding in POSTFIX

INCREMENT POSTFIX INCREMENT

COBOL BY ONE BY ONE.

See Stan Kelly-Bootle’s book The

Computer Contradictionary for more.

the line we see the event ID (310), which is effectively an index into

the audit log. Use it as an argument to ausearch to drill deeper:

ausearch -a 310

time->Tue Aug 19 18:47:58 2008

type=PATH msg=audit(1219168078.990:310): item=0 name=”/etc/

passwd” inode=256011 dev=fd:00 mode=0100644 ouid=0 ogid=0

rdev=00:00 obj=system_u:object_r:etc_t:s0

type=CWD msg=audit(1219168078.990:310): cwd=”/home/ellie”

type=SYSCALL msg=audit(1219168078.990:310): arch=40000003

syscall=5 success=no exit=-13 a0=bfd559d8 a1=8201 a2=0

a3=8201 items=1 ppid=4954 pid=4978 auid=0 uid=501 gid=501

euid=501 suid=501 fsuid=501 egid=501 sgid=501 fsgid=501

tty=pts2 ses=33 comm=”cp” exe=”/bin/cp” subj=unconfined_u:

unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)

I apologise for the inscrutability of the output, but look carefully

and you can see the timestamp and user ID of the event. Bad ellie.

The audit rules established by auditctl are just for the ‘here and

now’ – they won’t survive a reboot. To make the rules permanent,

place them into the file /etc/audit/audit.rules, which is read at

boot time. The rules in this file are simply the parameters that

would be passed to auditctl. So, for example, the line in audit.rules

corresponding to the rule we played with earlier looks like this:

-w /usr/bin/nmap -p x -k port-scan

To learn more about the Linux audit system, look at the man

pages for auditd, auditd.conf, auditctl, aureport and ausearch. Try

visiting www.intersectalliance.com; its tool Snare provides GUIs

for building audit rulesets and viewing the results. LXF

 The kernel

audit system

records key

events according

to rules specified

by auditctl.

 Kernel space

/etc/audit/audit.rules

/etc/audit/audit.conf

Kernel audit system auditctl

aureport ausearch

Output from
aureport

Output from
ausearch

/var/log/audit/audit.log

auditctl

LXF112.sysadmin Sec2:65 29/9/08 7:23:52 pm

