
School of Linux

84 LXF144 May 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

Previous parts on the DVD

Installing software on Linux – that’s a doddle, right? Just
fire up your lovely graphical browser, poke checkboxes
next to the apps you fancy and they’ll magically be

downloaded from the internet and installed. That’s all well and
good for most users, but if you’re looking to be a serious
sysadmin some day, you’ll need to know the nitty-gritty of
managing packages at the command line, too. (Note: we’ll be
covering the command line fully in a later tutorial; we’re just
going to focus on a small set of utilities here.)

If you’re somewhat new to the world of Linux, it’s worth
considering what a package actually is. Ultimately, it’s a single

The Mike Saunders

Part 4: In this month’s class, we examine a
topic that all administrators have to deal
with: package management. Read on to
learn how it works in RPM and Deb flavours.

Let’s start with Deb packages, originally created by the
Debian project and now used in a vast range of Debian-based
distros, such as Ubuntu. Here’s the filename for a typical
Debian package:
nano_2.2.4-1_i386.deb

There are five components to this filename. First is the
name of the application, followed by its version number
(2.2.4). The -1 is the distro’s own revision of the package,
separate from the version number of the application. For
example, if a package is built incorrectly or is missing some
documentation, when it’s rebuilt, that number will increment
to 2, 3 and so forth. Then there’s i386, which identifies the
CPU architecture that this package runs on, and finally the
.deb identifier suffix.

Let’s say that you’re running Debian 6 and you have that
Nano package, which you’ve downloaded from the internet,

and it’s sitting in your home directory. Navigate to
Applications > Accessories > Terminal and enter su to switch
to the superuser (administrator). To install the package, enter:
dpkg -i nano_2.2.4-1_i386.deb

Provided that there are no problems (such as the fact that
you’ve got a newer version of Nano already installed, or you’re
missing libraries that it depends on), the package will be
installed successfully and you can enter nano to fire it up.
Dpkg is a useful utility for installing one or more package files
that you’ve already downloaded – if you have multiple
packages to install, use dpkg -i *.deb/ (the asterisk is a
wildcard, here meaning all files ending in .deb).

There are two ways to remove a package. Running:
dpkg -r nano

will remove the program, but will leave any configuration files
intact (in this case, /etc/nanorc). This is useful to system

Last month We looked at filesystems and how to partition a drive.

Section 1: The Debian way

compressed file that expands into multiple files and
directories. Many packages contain programs, but some
contain artwork and documentation. Large projects (such as
KDE) are split up by distro-makers into a range of packages,
so that when one small program has a security fix, you don’t
need to download the entire desktop.

Packages are typically more involved than simple archives,
though. For instance, they can depend on other packages or
include scripts that should be run when they’re installed and
removed. Making a high-quality package can be a lot of work,
but it does make life easier for users.

LXF144.tut_lpi 84 3/14/11 3:51:48 PM

School of Linux School of Linux

www.tuxradar.com May 2011 LXF144     85

administrators who make customisations to config files – you
might want to get rid of a package in order to replace it with
a more tailored, source-built version, but to retain the same
config file. If you want to get rid of everything, run the dpkg
--purge nano command.

This is fine when you have pre-downloaded packages to
install, but a more flexible alternative is apt-get. APT is the
Advanced Package Tool, and provides facilities beyond simple
package installation and removal. Most notably, apt-get can
retrieve packages (and dependencies) from the internet. For
instance, say you want the Vim editor, but you don’t have the
relevant Deb packages to hand. Enter:
apt-get install vim

APT will retrieve the correct packages for your current
distro version from the internet and install them. Just before
the download phase, however, you’ll be given a chance to
confirm the operation:
Need to get 7,005 kB of archives.
After this operation, 27.6MB of additional disk space will be
used.
Do you want to continue [Y/N]?

This tells you what effect the operation is going to have on
your disk space (showing the download size and
uncompressed size). Enter Y to continue.

How does APT know where to get the packages from?
This may all seem like black magic, but there’s a clear system
behind it: repositories. Essentially, a repository is a structured
online collection of packages for a particular version of a
Linux distribution. These packages have been checked to
work with a distro, and any dependencies that a package may
need should be included. Repositories can range from vast
archives containing thousands of packages – such as
Debian’s – to small, private collections lurking out in the
backwater of the internet.

Because these repositories are online, they can be
specified as URLs. Have a look in /etc/apt/sources.list and
you’ll see lines such as:
deb http://ftp.uk.debian.org/debian/ squeeze main

Here, deb tells APT that the URL is a source of Deb
packages, and that’s followed by the URL itself. From there,
you have the version identifier for the distro, which in this
case is squeeze, to signify Debian 6. Lastly, you have the
category of packages that you want to access. In Debian, for
instance, there’s the main category for packages that abide
by its free software guidelines, but there’s also a non-free
category for programs that aren’t quite so open.

 Just because
you’re at the
command line,
you don’t have to
forsake a good
package manager
– Aptitude does
the trick.

So that’s the general source for programs you may wish to
install, but there’s also another repository for security and
bugfix updates, which can be found with:
deb http://security.debian.org/ squeeze/updates main

An increasing number of Linux software providers are
supplying their own repositories to go alongside the official
distro ones. If you’re given a string of text similar to the one
above to install a package, paste it into your /etc/apt/
sources.list file and save the changes. APT stores a local
cache of package information for quick searching, so it won’t
have details of the new packages until you tell it to update:
apt-get update

Once you’ve done this, you’ll be able to install the very
latest packages. (To install all updated packages at once, use
apt-get upgrade.) You can also make queries to the local
cache by running the appropriately named apt-cache
command. For example:
apt-cache search chess

This command will display a list of all of the available
(accessible in the repositories) packages with the word chess
in their title or description.

APT is an extremely powerful system, and its functionality
is spread across several utilities (enter apt and hit Tab to see
the existing options). You can harness a lot of its functionality
in a single program by entering aptitude. This is an Ncurses-
based program that provides various GUI-like features in a

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Converting packages with Alien
RPM and Deb are the big two package formats
in the Linux world, and they don’t play nicely
with one another. Sure, you can install the Dpkg
tools on an RPM box (or the rpm command on a
Debian box) and try to force packages to install
that way, but the results won’t be pretty and you
can expect a lot of breakage.

A slightly saner option is to use the Alien tool,
which is available in the Debian repositories.
This handy utility converts Deb files to RPMs,
and vice versa. For instance:

alien --to-deb nasm-2.07-1.i386.rpm
This generates a file called nasm_2.07-2_

i386.deb, which you can then install with the
dpkg -i command described earlier. Whether or
not it will install properly is another matter,
though: some packages can be so specific to
distros that they will simply fall apart when you
attempt to use them elsewhere.

All that Alien does is modify the compression
format and metadata formats to fit a particular
packaging system; it can’t guarantee that the

package will adhere to the filesystem layout
guidelines of the distro, or that pre- and post-
installation scripts will function correctly.

Over the years, we’ve had reasonable success
when using Alien to convert small, standalone
programs that have minimal dependencies. You
might be in luck, too. Large apps are generally
out of the question, though, and trying to
replace critical system files (such as glibc) with
those from another distro would be a very
unwise move indeed.

After installing
programs with
apt-get install,
the downloaded
packages are
stored in a cache
in /var/cache/
apt/archives to be
reused later. This
can get rather large
if you’re installing
big beasts such
as KDE, though:
to clean it up, run
apt-get clean.

Quick
tip

LXF144.tut_lpi 85 3/14/11 3:51:48 PM

School of Linux

86     LXF144 May 2011 www.linuxformat.com

School of Linux

Never miss another issue Subscribe to the #1 source for Linux on page 68.

Building packages from source code
Most binary packages you’re likely to come
across have been generated from a source code
equivalent. The process of creating packages is
rather more involved than just gzip-ing up a
binary, so scripts and configuration files are
required. On Debian-based distros, the first step
is to install the required tools:
apt-get install dpkg-dev build-essential fakeroot

Next, tell Debian that you want access to
source code and not just binary Debs by
opening up /etc/apt/sources.list and
duplicating lines that start with deb to deb-src.
For example:
deb-src http://ftp.uk.debian.org/debian/ squeeze

main
(Depending on your setup, you may have

these tools installed by default.) You can then

get the source for a program with apt-get
source package, replacing package with the
program name. The original upstream source
code will be downloaded, extracted and patched
with any distro-specific changes. You can switch
into the resulting extracted directory with cd
package-*. Some packages have library and
additional tool dependencies for building, which
you can install using apt-get build-dep package.

You can now go about making any source
code customisations you need, or changing the
optimisation options for the compiler in the
CFLAGS line in debian/rules. Then build the
package using:
dpkg-buildpackage

Once the build process is complete, enter
cd .. to go to the directory above the current

one, then ls. You’ll see that there are one or
more freshly built Deb packages, which you can
now distribute.

For RPM systems, you can install the
Yumdownloader tool, which lets you grab SRPM
(source RPM packages) via yumdownloader
-source package (replacing package with the
name of whatever you need). An SRPM contains
the source code along with specifications for
building the code (a SPEC file), plus any distro-
specific tweaks and patches.

You can then build binary packages from
them with rpmbuild --rebuild filename.src.
rpm. Depending on the program that you’re
building, you’ll end up with one or more binary
RPM packages, which you can go on to
distribute and install.

 Want to change a program’s settings via its package scripts? You can do so
using the dpkg-reconfigure command.

text mode environment, such as menus, dialog boxes and so
on. It even has a Minesweeper clone built in!

You can browse lists of packages using the cursor keys
and Enter, and the available keypress operations are
displayed at the top. Hit Ctrl+T to bring up a menu. Aptitude
is great when you’re logged into a remote machine via SSH
and need to perform a certain job but can’t remember the
exact command for it, as you can simply look in the menu to
find it, instead of struggling.

Let’s go back to the Dpkg tool for a moment. As well as
installing and removing packages, Dpkg can be used to query
the database of installed packages. For instance, if you want
to list the files included in the nano package:
dpkg -L nano

Debian packages carry a status, reflecting the state of
integration they have with the system. This is a complex topic
that’s beyond the scope of LPI 101, but in a nutshell: packages
can be fully installed, or they can be half-installed and waiting

for certain configuration options to be set. They can also be
unpacked (the files extracted but installation scripts not yet
run). Enter dpkg -l nano (lowercase L this time) and you’ll
see a table with information about the package, and some
basic ASCII art pointing to the two ‘ii’ columns at the start.
This shows that the administrator wants the package to be
installed (meaning that it isn’t going to be removed in the next
round of updates), and that it’s actually installed as well.

To get a more detailed list of information about a package,
run this command:
dpkg -s nano

This will provide everything you need to know about the
package: its version, size, architecture, dependencies and
even the email address of the maintainer, in case you wish to
report any problems (although it’s often better to use a
distro’s bug-tracking tools). An interesting feature here is the
provides line. Nano, for instance, provides the ‘editor’ feature,
which is deliberately generic. Some other command-line tools
depend on a text editor being installed, but it would be silly for
them to specify an exact editor, such as Emacs or Vim.
Instead, they ask that a package that provides ‘editor’ is
installed – and so Nano does the trick.

Another useful command is dpkg -S, followed by a
filename. This searches for files matching this filename on the
system, and then tells you which package provides them. For
instance, dpkg -S vmlinuz will locate the vmlinuz kernel file
on the system and show you which package originally carried
out its installation.

Finally, a word about package configuration. As you know,
many programs have text-based configuration files in the
/etc directory that you can modify by hand. That’s all fine, but
many Deb packages try to make things easier for the
administrator by providing a certain level of automation.
Install the Postfix mail server via apt-get, for instance, and a
dialog box will pop up, offering to guide you through the
server setup process. This saves you from having to learn the
format of a specific configuration file. If you do ever need to
change the configuration and want to do it the Debian way,
simply use this command:
dpkg-reconfigure postfix

LXF144.tut_lpi 86 3/14/11 3:51:49 PM

School of Linux School of Linux

www.tuxradar.com May 2011 LXF144     87

To see a list of all
installed packages
on a Deb-based
system, enter dpkg
-l. For RPM-based
distros, enter rpm
-qa. Because these
lists are very long,
you might find it
more convenient to
redirect the output
to a text file with
rpm -qa > list.txt.

Quick
tip

Next month We’ll be getting properly acquainted with the command line.

Originally starting life as the Red Hat Package Manager, today
this system has adopted a recursive acronym (RPM Package
Manager) to highlight its distro neutrality. A vast range of
distros use RPM, so it’s likely to stay around for a long time –
especially as it’s the chosen package format of the Linux
Standard Base. Here, we’re using CentOS 5, the super-reliable
community-supported rebuild of Red Hat Enterprise Linux.

Basic package management on an RPM system is, as
you’d expect, done with the rpm command. This enables you
to work with packages that you’ve downloaded. For instance,
if you’ve grabbed a package for NASM:
rpm -Uvh nasm-0.98.39-1.i386.rpm

You can see here that the filename structure is the same
as that with Deb packages: first you have the name of the
package, then its version (0.98.39 in this case), followed by
the package maintainer’s own version (1). Lastly, there’s the
architecture and the .rpm suffix.

Look at the flags used in this command: -U is particularly
important, because it means ‘upgrade’. You can use rpm -i to
install a package, but it will complain if an older version is
already installed; -U can install a new package or upgrade an
existing one, meaning you only have to use one command.

If you’ve downloaded an RPM file and want to check that it
isn’t corrupt, use rpm --checksig filename. Removing a
package is simple, too – just run rpm -e nasm.

There are a few ways to find out information about a
package. When dealing with an RPM file before installation, run:
rpm -qpi nasm-0.98.39-1.i386.rpm

For dealing with packages that are already installed,
remove the p flag and just use the stem of the package name.

Section 2: The RPM way

 Getting information about a package is straightforward
when using the rpm -q command.

For instance, the equivalent of the previous command for
when NASM is already installed would be:
rpm -qR nasm

To get a list of files installed by a package, use rpm -ql
nasm. You can find out to which package a file belongs by
using rpm -qf /path/to/file. The rpm command is
tremendously versatile, like its dpkg cousin. To explore its
capabilities further, see the manual page (man rpm).

It’s also worth noting that you can install RPM packages
before installing by converting them to CPIO archives and
extracting. For instance:
rpm2cpio nasm-0.98.39-1.i386.rpm > data.cpio
cpio -id < data.cpio

This will expand the files contained in the package into the
current directory, so you may end up with a usr directory, etc
directory, and so on.

While the rpm command is useful for working with local
packages, there’s also a tool that automates the job of
retrieving packages and dependencies from the internet,
much like Debian’s APT. This is called Yum – Yellowdog
Updater Modified – and was originally based on a program
for another distro. For instance, if we want to install the Z Shell
but don’t have any packages with us locally:
yum install zsh

Yum will check its cache of package information, work out
which dependencies are required and prompt you to hit Y if
you want to proceed with the operation. If so, it will download
and install the required packages. You can see a list of
packages matching a keyword with yum list followed by the
keyword, and get information on a package before installing
with yum info, followed by the package name.

Yum is especially useful for grabbing operating system
updates: run yum update and it’ll show a list of packages
that have been changed remotely since the installation took
place. Where’s it finding these packages, though? The answer
lies in the /etc/yum.repos.d directory. Inside, you’ll find text
files ending in .repo, which contain repository information –
locations for package stores on the internet. For instance, the
stock CentOS installation that we’re using for this tutorial
contains repositories for all of the main CentOS packages and
their relevant updates.

You can add your own entries here if you find a program
on the internet that has an appropriate repository for your
distro version, but make sure that you run yum makecache
afterwards to update the locally stored information. Yum is
highly configurable – see /etc/yum.conf for lots of settings
to play with. LXF

Test yourself!
Once you’ve read through this tutorial,
internalised all of the concepts and tried out
your own variants of the commands, it’s worth
checking that you can respond in an exam-like
situation. Read these questions, then rotate the
page to see the answers underneath.
1 �What’s the command used to remove a Deb

package, including its configuration files?
2 �Which file contains a list of repositories used

in Debian-based distros?
3 �Which command provides a detailed list of

information about a package in Debian?
4 �Which command would you use to convert an

RPM file to a Deb?

5 �How do you remove a package from an
RPM‑based system?

6 Where do Yum’s repositories live?
7 �How do you refresh the cache of packages

with Yum?

1. dpkg --purge 2. /etc/apt/sources.list 3. dpkg -s 4. alien --to-deb
5. rpm -e 6. /etc/yum.repos.d 7. yum makecache

LXF144.tut_lpi 87 3/14/11 3:51:49 PM

