
School of Linux

84 LXF146 July 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

Previous parts on the DVD

As we discovered last issue, the command line isn’t a
crusty, old-fashioned way to interact with a computer,
made obsolete by GUIs, but rather a fantastically

flexible and powerful way to perform tasks in seconds that
would otherwise take hundreds of mouse clicks.

Additionally, you can’t always rely on the X Window
System functioning properly – in which case knowledge of
the command line is essential – and if you’re running Linux as
a server OS, you don’t want a hulking great GUI sitting on the
hard drive anyway.

The Mike Saunders

Part 6: After mastering the basics of the
command line it’s time to move on to
advanced tricks and techniques.

In the vast majority of cases when you’re using the command
line, you’ll just want the results of your commands to be
printed to the screen. However, there’s nothing magical about
the screen, and in UNIX terms it’s equal to any other device.
Indeed, because of UNIX’s “everything is a file” philosophy,
then output from commands can be sent to files rather than
to the screen. Consider this command:
uname -a > output.txt

As we saw last issue, uname -a prints information about the
operating system you’re running. On its own, it displays the
results on the screen. With the greater-than > character,
however, the output is not shown on the screen, but is
redirected into the file output.txt. You can open the file
output.txt in your text editor to see this, or display it on the
screen using cat output.txt.

Now try this:
df > output.txt

Look at the contents of output.txt, and it’ll show the results
of the disk usage command df. An important point here is
that the contents are overwritten; there’s no trace of the
previous uname -a command. If you want to append the
contents of a command to a file, do it like this:
uname -a > output.txt
df >> output.txt

In the second line, the double greater-than characters >>
mean append, rather than overwrite. So you can build up an
output file from a series of commands in this way.

This is redirecting. There is, however, another thing you
can do with the output of a command, and that’s send it
directly to another program, a process known as piping. For
instance, say you want to view the output of a long command
such as ls -la. With the previous redirect operation, you could
do this:
ls -la > output.txt

Last month We got to grips with the fundamentals of the command line.

Section 1: Redirecting output

If you’ve just started reading the magazine and therefore
haven’t been following this series, you can find the PDFs in
the Magazine section of the coverdisc. You can peruse those
at your own pleasure, but to really get the most out of this
month’s instalment, we recommend reading last issue’s
tutorial first.

That explains the fundamentals of the command line,
including editing commands, using wildcards and
manipulating files, and is an important preparation for the
advanced topics we’re going to handle here.

LXF146.tut_lpi 84 5/5/11 11:21:35 AM

School of Linux School of Linux

www.tuxradar.com July 2011 LXF146 85

What are regular expressions?
At first glance, there’s nothing regular about a
regular expression. Indeed, when you come
across something like this:
a\(\(b\)*\2\)*d

you might be tempted to run away screaming.
Regular expressions are ways of identifying
chunks of text, and they’re very, very
complicated. Whatever you want to do – be it
locate all words that begin with three capital
letters and end with a number, or pluck out all
chunks of text that are surrounded by hyphens
– there’s a regular expression to do just that.

They usually look like gobbledygook, and vast
books have been written about them, so don’t
worry if you find them painful. Even the mighty
beings that produce this magazine don’t like to
spend much time with them.

Fortunately, for LPIC 1 training you don’t
need to be a regular expression (regexp)
guru – just be aware of them. The most you’re
likely to come across is an expression for
replacing text, typically in conjunction with sed,
the streamed text editor. sed operates on input,
does edits in place, and then sends the output.

You can use it with the regular expression to
replace text like this:
cat file.txt | sed s/apple/banana/g > file2.txt

Here we send the contents of file.txt to sed,
telling it to use a substitution regular expression,
changing all instances of the word apple to
banana. Then we redirect the output to another
file. This is by far the most common use of
regular expressions for most administrators,
and gives you a taste of what it’s all about. For
more information, enter man regex, but don’t
go mad reading it.

less output.txt
This sends the list to a file, and then we view it with the less
tool, scrolling around with the cursor keys and using q to quit.
But we can simplify this and obviate the need for a separate
file using piping:
ls -la | less

This | pipe character doesn’t always look well in print; its
position varies amongst keyboard layouts, but you’ll typically
find it broken into two mini lines and accessed by pressing
Shift+Backslash. The pipe character tells the shell that we
want to send the output of one command to another – in this
case, the output of ls -la straight to less. So instead of
reading a file, less now reads the output from the program
before the pipe.

In certain situations, you might want to use the output of
one command as a series of arguments for another. For
instance, imagine that you want Gimp to open up all JPEG
images in the current directory and any subdirectories. The
first stage of this operation is to build up a list, which we can
do with the find command:
find . -name “*.jpg”

We can’t just pipe this information directly to Gimp, as it’s just
raw data when sent through a pipe, whereas Gimp expects
filenames to be specified as arguments. We do this using
xargs, a very useful utility that builds up argument lists from
sources and passes them onto the program. So the
command we need is:
find . -name “*.jpg” | xargs gimp

Another scenario that occasionally pops up is that you might

 Redirecting
output to create
new files (or
append to
existing files) is
done with > and
>> operators.

want to display the output of a command on the screen, but
also redirect its output to a file. You can accomplish this with
the tee utility:
free -m | tee output.txt

Here, the output of the free -m command (which shows
memory usage in megabytes) is displayed on the screen, but
also sent to the file output.txt for later viewing. You can add
the -a option to the tee command to append data to the
output file, rather than overwriting it.

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Section 2: Processing text
UNIX has always been a fantastic operating system for
performing operations on text (both in files and being piped
around as before), and Linux continues that. Most
distributions include a wide range of GNU utilities for
manipulating text streams, letting you take a bunch of
characters and reorganise them into many different formats.
They’re often used together with the handy pipe character,
and we’ll explain the most important tools you need for LPI
certification here.

First, let’s look at a way to generate a stream of text. If
you have a file called words.txt containing Foo bar baz,
then entering:

cat words.txt
will output it to the screen. cat means concatenate, and
can be used with redirects or pipe characters as covered
earlier. Often you’ll only want a certain portion of a
command’s output, and you can trim it down with the cut
command, like this:
cat words.txt | cut -c 5-7

Here, we’re sending the contents of words.txt to the cut
command, telling it to cut out characters 5 through to (and
including) 7. Note that spaces are characters, so in this case,
the result we see is bar. This is very specific, however, and you
may need to cut out a word that’s not guaranteed to be at

Want to store all
of your work at
the command line
in a file? Enter
script, and you’ll
start a new shell
session inside the
current one. Run
your commands,
type exit and you’ll
see a file called
typescript has
been created with
all the output from
your work stored.

Quick
tip

LXF146.tut_lpi 85 5/5/11 11:21:36 AM

School of Linux

86 LXF146 July 2011 www.linuxformat.com

School of Linux

Never miss another issue Subscribe to the #1 source for Linux on page 66.

Finding text with the mighty grep
If you’ve been reading Linux Format for a while,
you might’ve come across the term grep as a
generic verb, meaning to search through things.
While find and locate are the standard Linux
tools for locating files, grep looks inside them,
letting you locate certain words or phrases.
Here’s its most simple use:
cat /var/log/messages | grep CPU

This prints all lines in the file /var/log/
messages that contain the word CPU. Note
that by default this is case-sensitive; if you
want to make it insensitive, use the -i flag after
the grep command. Occasionally you might
want to perform a search that filters out lines,

rather than showing them, in which case you
can use the -v flag – that omits all lines
containing the word.

grep works well with regular expressions (see
the previous box). There are a couple of
characters we use in regexps to identify the
start and end of a line. To demonstrate this,
create a plain text file containing three lines:
bird, badger, hamster. Then run this:
cat file.txt | grep -e ^b

Here, we tell grep to use a regular expression
search, and the ^ character refers to the start of
the line. So here, we just get the lines that begin
with b – bird and badger. If we want to do our

searches around the end of lines, we use the $
character like this:
cat file.txt | grep -e r$

In this instance, we’re searching for lines that
end in the r character – so the result is badger
and hamster. You can use multiple grep
operations in sequence, separated by pipes, in
order to build up very advanced searches.
Occasionally, especially in older materials, you’ll
see references to egrep and fgrep commands –
they used to be variants of the grep tool, but
now they’re just shortcuts to specify certain
options to the grep command. See the manual
page (man grep) for more information.

 Tally up the number of PulseAudio fails in your log files by piping output to
the nl command.

character 5 in the text (and three characters long).
Fortunately, cut can use any number of ways to break up

text. Look at this command:
cat words.txt | cut -d “ “ -f 2

Here, we’re telling cut to use space characters as the
delimiter – ie, the thing it should use to separate fields in the
text – and then show the second field of the text. Because
our text contains Foo bar baz, the result here is bar. Try
changing the final number to 1 and you’ll get Foo, or 3 and
you’ll get baz.

So that covers specific locations in an individual line of
text, but how about restricting the number of lines of text
that a command outputs? We can do this via the head and
tail utilities. For instance, say you want to list the biggest five
files in the current directory: you can use ls -lSh to show a list
view, ordered by size, with those sizes in human-readable
formats (ie megabytes and gigabytes rather than just bytes).

However, that will show everything, and in a large
directory that can get messy. We can narrow this down with
the head command:
ls -lSh | head -n 6

Here, we’re telling head to just restrict output to the top six

lines, one of which is the total figure, so we get the five
filenames following it. The sworn enemy of this command
is tail, which does the same job but from the bottom of a
text stream:
cat /var/log/messages | tail -n 5

This shows the final five lines in /var/log/messages. tail has
an especially handy feature, which is the ability to watch a file
for updates and show them accordingly. It’s called follow and
is used like this:
tail -f /var/log/messages

This command won’t end until you press Ctrl+C, and will
constantly show any updates to the log.

When you’re working with large quantities of text, you’ll
often want to sort it before doing any kind of process on it.
Fittingly, then, there’s a sort command part of every typical
Linux installation.

To see it in action, first create a file called list.txt with the
following contents:
ant
bear
dolphin
ant
bear

Run cat list.txt and you’ll get the output, as expected. But
run this:
cat list.txt | sort

And you’ll see that the lines are sorted alphabetically, so you
have two lines of ant, two lines of bear, and one of dolphin. If
you tack the -r option onto the end of the sort command, the
order will be reversed.

This is all good and well, but there are duplicates here, and
if you’re not interested in those then it just wastes processing
time. Thankfully there’s a solution in the form of the uniq
command, and a bit of double-piping magic. Try this:
cat list.txt | sort | uniq

Here, uniq filters out repeated consecutive lines in a text
stream, leaving just the original intact. So when it sees two or
more lines containing ant, it removes all of them except for
the first. uniq is tremendously powerful and has a bag of
options for modifying the output further: for instance, try
uniq -u to only show lines that are never repeated, or uniq -c
to show a line count number next to each line. You’ll find uniq
very useful when you’re processing log files and trying to filter
out a lot of extraneous output.

If you need help
on any of the
commands used
here, go to the
manual page. For
instance, to read
the manual for the
cut command,
enter man cut. Use
the cursor keys to
scroll, hit forward
slash and type text
to search, and press
Q to quit.

Quick
tip

LXF146.tut_lpi 86 5/5/11 11:21:36 AM

School of Linux School of Linux

www.tuxradar.com July 2011 LXF146 87

Juggling text files
that contain tabs
can be tricky, but
there’s a solution
in the form of the
expand command.
This changes
tabs into blank
spaces, making
text easier to work
with. There’s also
an unexpand
command which
does the reverse.

Quick
tip

Next month Managing filesystem integrity, and the ultra-terse Vi editor.

 Want to limit the output of a command to the first or last few lines? The head
and tail commands are your friends.

Test yourself!
Read this tutorial in full? Tried out the
commands at your shell prompt? Think you’ve
fully internalised all the concepts covered here?
Then it’s time to put your knowledge to the test!
Read the following questions, come up with an
answer, and then check with the solutions
printed upside-down underneath.
1 You have a file called data.txt, and you want

to append the output of the uname command
to it. How?
2 How would you display the output of df and

simultaneously write it to myfile.txt?
3 You have file.txt containing this line:
bird,badger,hamster. How would you chop out
the second word?
4 You have a 500-line file that you want to split

into two 250-line chunks. How?
5 And how do you reassemble the two parts?
6 You have file1.txt, and you want to change all

instances of the word Windows to MikeOS.
How?
7 And finally, take myfile.txt, sort it, remove

duplicates, and output it with prefixed line
numbers.

1 - uname >> data.txt. 2 - df | tee myfile.txt. 3 - cat file.txt | cut -d “,” -f 2. 4 - split -l 250 file.txt. 5 - cat xab >> xaa. 6 - cat file1.txt | sed s/Windows/MikeOS/g > output.txt. 7 - cat myfile.txt | sort | uniq | nl
Let’s move on to reformatting text. Open the previously
used file, list.txt, and copy and paste its contents several
times so that it’s about 100 lines long. Save it and then enter
this command:
cat list.txt | fmt

Here, the fmt utility formats text into different shapes and
styles. By default, it takes our list – separated by newline
characters – and writes out the result like a regular block of
text, wrapping it to the width of the terminal window. We
can control where it wraps the text using the -w flag, eg cat
list.txt | fmt -w 30. Now the lines will be, at most, 30
characters wide.

If you love gathering statistics, then you’ll need a way to
count lines in an output stream. There are two ways to do
this, using nl and wc. The first is a very immediate method
which simply adds line numbers to the start of a stream,
for instance:
cat /var/log/messages | nl

This outputs the textual content of /var/log/messages, but
with line numbers inserted at the start of each line. If you
don’t want to see the output, but rather just the number itself,
then use the wc utility like so:
cat /var/log/messages | wc -l

(That’s dash-lowercase-L at the end.) wc actually comes from
word count, so if you run it without the -l flag to show lines,
you get more detailed results for words, lines and characters
in the text stream.

Formatting fun
One of the tasks you’ll do a lot as a trained Linux
administrator is comparing the contents of configuration and
log files.

If you’re an experienced coder then you’ll know your way
around the diff utility, but a simpler tool to show which lines
match in two files is join. Create a text file called file1 with the
lines bird, cat and dog. Then create file2 with adder, cat and
horse. Then run:
join file1 file2

You’ll see that the word cat is output to the screen, as it’s the
only word that matches in the files. If you want to make the
matches case-insensitive, use the -i flag.

For splitting up files, there’s the appropriately named split
command, which is useful for both textual content and binary
files. For the former, you can specify how many lines you want
to split a file into using the -l flag, like this:
split -l 10 file.txt

This will take file.txt and split it into separate 10-line files,
starting with xaa, then xab, xac and so forth – how many files

are produced will depend on the size of the original file. You
can also do this with non-text files, which is useful if you need
to transfer a file across a medium that can’t handle its size.
For instance, FAT32 USB keys have a 4GB file size limit, so if
you have a 6GB file then you’ll want to split it into two parts:
split -b 4096m largefile

This splits it into two parts: the first, xaa, is 4GB (4096MB)
and the second, xab, contains the remainder. Once you’ve
transferred these chunks to the target machine, you can
reassemble them by appending the second file onto the first
like this:
cat xab >> xaa

Now xaa will contain the original data, and you can rename it.

And some more...
Finally, a mention of a few other utilities that may pop up if
you take an LPI exam. If you want to see the raw byte data in
a file, you can use the hd and od tools to generate
hexadecimal and octal dumps respectively. Their manual
pages list the plethora of flags and settings available.

Then there’s paste, which takes multiple files and puts
their lines side-by-side, separated by tabs, along with pr
which can format text for printing. Lastly we have tr, a
utility for modifying or deleting individual characters in a
text stream. LXF

LXF146.tut_lpi 87 5/5/11 11:21:37 AM

