
Avr-Microcontrollers-in-Linux-Howto

Revision History
Revision 44 2009-04-20 17:13:07 Revised by: jdd
obfuscate e-mail at the author demand
Revision 43 2009-03-29 20:49:12 Revised by: ranjeeth

Revision 42 2009-03-29 20:45:09 Revised by: jdd
reverting after publication
Revision 41 2009-03-29 20:41:59 Revised by: jdd
edit to export docbook
Revision 40 2009-03-28 21:07:57 Revised by: RickMoen
Adjust style of mailto link to author's original preference.
Revision 39 2009-03-28 21:05:45 Revised by: RickMoen
Revert e-mail obfuscation, supply some missing punctuation, [re-]fix capitalisation, fix and clarify new
run-on sentence.
Revision 38 2009-03-23 18:21:24 Revised by: ranjeeth

Revision 37 2009-03-23 18:19:51 Revised by: ranjeeth

Revision 36 2009-03-23 17:20:32 Revised by: ranjeeth

Revision 35 2009-03-23 17:19:47 Revised by: ranjeeth

Revision 34 2009-03-23 10:26:00 Revised by: jdd
publishing tests
Revision 33 2009-03-23 10:25:06 Revised by: jdd

Revision 32 2009-03-23 10:24:24 Revised by: jdd
use of macro to obfuscate e-mail
Revision 31 2009-03-23 10:11:47 Revised by: jdd
change was only to export docbook without admonitions
Revision 30 2009-03-23 10:09:15 Revised by: jdd

Revision 29 2009-03-23 10:05:07 Revised by: jdd

Revision 28 2009-03-23 09:58:40 Revised by: jdd
adding the wiki as link
Revision 27 2009-03-23 09:53:28 Revised by: RickMoen
Insert needed space characters into "pin9", "pin10", "pin25" constructs
Revision 26 2009-03-23 09:49:05 Revised by: RickMoen
Make markup of all the software items mentioned be consistent
Revision 25 2009-03-23 09:43:40 Revised by: RickMoen
Remove a couple of stray commas.

Revision 24 2009-03-23 09:41:30 Revised by: RickMoen
Polishing up a few last bits of punctuation
Revision 23 2009-03-23 04:11:31 Revised by: ranjeeth

Revision 22 2009-03-23 04:10:34 Revised by: ranjeeth

Revision 21 2009-03-23 04:09:07 Revised by: ranjeeth

Revision 20 2009-03-17 16:20:27 Revised by: ranjeeth

Revision 19 2009-03-17 16:18:33 Revised by: ranjeeth

Revision 18 2009-03-16 19:10:30 Revised by: RickMoen
Fix hyperlink, fix English diction of new sentence.
Revision 17 2009-03-16 18:50:19 Revised by: ranjeeth

Revision 16 2009-03-16 11:36:49 Revised by: RickMoen
A couple of punctuation nits
Revision 15 2009-03-16 11:21:14 Revised by: RickMoen
Corrected numerous run-on sentences, punctuation and grammar errors, and questionable idiom.
Revision 14 2009-03-15 10:27:24 Revised by: BordenRhodes
Cleaned up basic grammar and spelling
Revision 13 2009-03-15 09:52:41 Revised by: jdd

Revision 12 2009-03-15 09:51:37 Revised by: jdd
add link to the manual of avr-libc
Revision 11 2009-03-14 21:47:18 Revised by: jdd
end of basic conversion
Revision 10 2009-03-14 21:40:18 Revised by: jdd

Revision 9 2009-03-14 21:39:26 Revised by: jdd

Revision 8 2009-03-14 21:33:04 Revised by: jdd
add the image
Revision 7 2009-03-14 21:27:59 Revised by: jdd

Revision 6 2009-03-14 21:26:48 Revised by: jdd

Revision 5 2009-03-14 21:25:13 Revised by: jdd
Firts step - conversion fro html by jdd and basic format edition
Revision 4 2009-03-14 21:22:37 Revised by: jdd

Revision 3 2009-03-14 21:18:25 Revised by: jdd

Revision 2 2009-03-14 21:13:09 Revised by: jdd

Revision 1 2009-03-14 21:10:33 Revised by: jdd

Table of Contents
1. HOWTO...1

2. AVR Microcontrollers in Linux HOWTO...2
2.1. Licence..2
2.2. What Is a Microcontroller?...2
2.3. Software Required..2
2.4. Hello World..3

2.4.1. Code Explanation..4
2.4.2. Compilation...4
2.4.3. Burning the Code...4

2.5. Author...6
2.6. Last version...6

Avr-Microcontrollers-in-Linux-Howto

i

1. HOWTO
AVR Microcontrollers in Linux HOWTO, Copyright (C) 2009 Ranjeeth p t
(ranjeeth_gecmail[at]yahoo[dot]com)

This HOWTO is for readers wishing to program an AVR microcontroller using a GNU/Linux machine. For
burning your code, we will be using a parallel port. You may need other electronics components (like a few
resistors, capacitors, parallel port connector, etc.), which can be bought from any electronics shop.

1. HOWTO 1

2. AVR Microcontrollers in Linux HOWTO

2.1. Licence

 Permission is granted to copy, distribute, and/or modify this
 document under the terms of the GNU Free Documentation License,
 Version 1.2, or any later version published by the Free Software
 Foundation; with no Invariant Sections, no Front-Cover Texts, and
 no Back-Cover Texts. A copy of the license is included in the
 section entitled "GNU Free Documentation License".

GNU Free Documentation License

2.2. What Is a Microcontroller?

A microcontroller is a single-chip computer. It has internal RAM, ROM, timers, counters, interrupt circuitry,
I/O ports, analog comparators, serial USARTs, analog to digital converters, watchdog timers, and a RISC
architecture. When you are using a microprocessor, you cannot program it alone. You need other components,
like RAM, ROM, timers, etc. For programming, you should know its architecture thoroughly: You must read
the datasheet for your microcontroller.

2.3. Software Required

binutils: Tools like the assembler, linker, etc.

gcc-avr: The GNU C compiler (cross-compiler for avr).

avr-libc: Package for the AVR C library, containing many utility functions.

uisp: A Micro In-System Programmer for Atmel's AVR MCUs (for burning code to MCUs' memory).

The following Atmel microcontrollers are supported by avr-gcc in Linux:

at90s Type Devices

at90s2313, at90s2323, at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, at90s8515,
at90s8515, at90s8535, at90s1200.

atmega Type Devices

atmega103, atmega603, atmega8, atmega48, atmega88, atmega8515, atmega8535, atmega16, atmega161,
atmega162, atmega163, atmega165, atmega168, atmega169, atmega32, atmega323, atmega325, atmega3250,
atmega64, atmega645, atmega6450, atmega128.

attiny Type Devices

attiny22, attiny26, attiny26, attiny13, attiny13, attiny13, attiny13, attiny2313, attiny11, attiny12, attiny15,
attiny28.

Other AVR Devices

2. AVR Microcontrollers in Linux HOWTO 2

http://wiki.tldp.org/LdpWikiDefaultLicence#GNUFreeDocumentationLicense

avr2, at90c8534, at86rf401, avr3, at43usb320, at43usb355, at76c711, avr4, avr5, at90can128, at94k, avr1.

binutils: Programs to manipulate binary and object files that may have been created for Atmel's AVR
architecture. This package is primarily for AVR developers and cross-compilers.

gcc-avr: The GNU C compiler, a fairly portable optimising compiler that supports multiple languages. This
package includes C language support.

avr-libc: Standard library used for developing C programs for Atmel AVR microcontrollers. This package
contains static libraries, as well as needed header files.

uisp: Utility to program AVR chips with object code created by gcc-avr. It supports in-system programming.

You download the above packages untar, configure, and install it. If you are using Debian or Ubuntu, these
packages are available in your distribution: Install them using apt or synaptic package manager.

2.4. Hello World

We are writing hello world for the atmega8 microcontroller, which has a 28-pin, 8-bit, RISC architecture.

Before proceeding, have a look at this manual about __avr-libc__, which will help you program better, and
understand. Also, refer to the datasheets for the various AVR microcontrollers.

Here is our first program:

/* ledblink.c, an LED blinking program */
#include<avr/io.h>
#include<util/delay.h>
void sleep(uint8_t millisec)
{
 while(millisec)

 {
 _delay_ms(1);/* 1 ms delay */
 millisec--;
 }
}
main()
{

 DDRC |=1<<PC2; /* PC2 will now be the output pin */
 while(1)
 {
 PORTC &= ~(1<<PC2);/* PC2 LOW */
 sleep(100);/* 100 ms delay */

 PORTC |=(1<<PC2); /* PC2 HIGH */
 sleep(100);/* 100 ms delay */
 }
}

Avr-Microcontrollers-in-Linux-Howto

2. AVR Microcontrollers in Linux HOWTO 3

http://www.nongnu.org/avr-libc/user-manual/

2.4.1. Code Explanation

The GNU C compiler for the Atmel family identifies all functional units within the microcontroller with
meaningful names. Thus, writing `PORTC=0xff' will result in the compiler generating machine code that
writes 0xff to I/O port C, which will set all port C pins to logic high. Because ports are bidirectional, we must
decide whether each pin should act as input or output. If the i'th bit of a register called DDRC (data direction
register C) is 1, then the i'th pin of PORTC's i'th pin will be an output. Otherwise, it will act as an input pin.
(Note that pin and bit numbers start at zero.) To make an LED blink, you have to make a pin high, then low.
(Here, we use PORTC's 2nd port. That is, PC2 will be the 25th pin.) There should be a delay between the two.
This is what the rest of the code does. For the delay, we use built-in function _delay_ms(1), which causes a 1
ms delay.

2.4.2. Compilation

avr-gcc -mmcu=atmega8 Os ledblink.c o ledblink.o

which will result in object file ledblink.o. Now, we will covert it to hex file, suitable for burning to the
microcontroller's memory.

avr-objcopy -j .text -j .data -O ihex ledblink.o ledblink.hex

We are converting it to a hex file because, for burning the code to atmega8, we will use uisp, whose input file
must be a .hex file.

Notice that you can less the ledblink.hex file.

:1000000012C02BC02AC029C028C027C026C025C0C6
:1000100024C023C022C021C020C01FC01EC01DC0DC
:100020001CC01BC01AC011241FBECFE5D4E0DEBF28
:10003000CDBF10E0A0E6B0E0EAE8F0E002C0059035
:100040000D92A036B107D9F710E0A0E6B0E001C0EC
:100050001D92A036B107E1F70CC0D2CF282FE4ECF7
:10006000F9E004C0CF010197F1F721502223D1F725
:100070000895CFE5D4E0DEBFCDBFA29AAA9884E66A

:0A008000EDDFAA9A84E6EADFF9CF6B
:00000001FF

2.4.3. Burning the Code

2.4.3.1. Hardware

We will be using the parallel port for burning. First, we have to develop a burning circuit for it.

Avr-Microcontrollers-in-Linux-Howto

2. AVR Microcontrollers in Linux HOWTO 4

This is the circuit for the atmega8 microcontroller. Pin 9 & pin 10 are connected by a 4 MHz crystal oscillator,
which is the external clock. The bottom right connector is for a parallel port.

If you are using any other microcontroller, as mentioned above, you should change accordingly. }}}

You should watch for RESET,XTAL1,XTAL2,SCK,MISO,MOSI pins, and connect.

2.4.3.2. Software

Now, we will burn ledblink.hex to the microcontroller.

uisp -dprog=dapa -dlpt=0x378

You should get message Atmega8 Found.

dprog is the programming method specifier, which in this case is dapa, i.e., Direct AVR Parallel Access. dlpt
is for the parallel device setting, which is 0x378, the parallel port's device address.

uisp -dprog=dapa -dlpt=0x378 --erase

Will erase the microcontroller's code.

Avr-Microcontrollers-in-Linux-Howto

2. AVR Microcontrollers in Linux HOWTO 5

uisp -dprog=dapa -dlpt=0x378 --upload if=ledblink.hex

Will upload the Input File ledblink.hex

Notice that you can see the LED at pin 25 blinking.

2.5. Author

Comments to: mailto:ranjeeth_gecmail[at]yahoo[dot]com

Ranjeeth Weblog

Govt Engg College Sreekrishnapuram,

Palakkad,Kerala India.

2.6. Last version

You may find the last up-to-date version of this HOWTO on the LDP wiki.

Avr-Microcontrollers-in-Linux-Howto

2. AVR Microcontrollers in Linux HOWTO 6

mailto:ranjeeth_gecmail[at]yahoo[dot]com
http://ranjeethpt.wordpress.com
http://wiki.tldp.org/Avr-Microcontrollers-in-Linux-Howto

	Table of Contents
	1. HOWTO
	2. AVR Microcontrollers in Linux HOWTO
	2.1. Licence
	2.2. What Is a Microcontroller?
	2.3. Software Required
	2.4. Hello World
	2.4.1. Code Explanation
	2.4.2. Compilation
	2.4.3. Burning the Code

	2.5. Author
	2.6. Last version

