
 Plug-and-Play-HOWTO

Table of Contents
 Plug-and-Play-HOWTO..1

David S. Lawyer mailto:dave@lafn.org..1
1. Introduction..1
2. What PnP Should Do: Allocate "Bus-Resources"...1
3. Setting up a PnP BIOS...1
4. How to Deal with PnP Cards...2
5. Tell the Driver the Configuration ??..2
6. How Do I Find Devices and How Are They Configured?...2
7. PCI Interrupts...2
8. PnP for External and Plug-in Devices...3
9. Error Messages...3
10. Interrupt Sharing and Interrupt Conflicts...3
11. Appendix..3
1. Introduction..3
1.1 1. Copyright, Trademarks, Disclaimer, & Credits...3

Copyright...3
Disclaimer...4
Trademarks..4
Credits...4

1.2 Future Plans; You Can Help..4
1.3 New Versions of this HOWTO..4
1.4 New in Recent Versions...4
1.5 General Introduction. Do you need this HOWTO?...5
2. What PnP Should Do: Allocate "Bus-Resources"...6
2.1 What is Plug-and-Play (PnP)?...6
2.2 Hardware Devices and Communication with them..6
2.3 Addresses...7
2.4 I/O Addresses (principles relevant to other resources too)..7
2.5 Memory Ranges..8
2.6 IRQs --Overview...9
2.7 DMA (Direct Memory Access) or Bus Mastering..10
2.8 DMA Channels (not for PCI bus)...10
2.9 "Resources" for both Device and Driver...10
2.10 Resources are Limited..11

Ideal Computers..11
Real Computers...11

2.11 Second Introduction to PnP...12
2.12 How Pnp Works (simplified)...12
2.13 Starting Up the PC...13
2.14 Buses..14
2.15 How Linux Does PnP...14
2.16 Problems with Linux PnP..15
3. Setting up a PnP BIOS..16
3.1 Do you have a PnP operating system?..16

 Linux prior to the 2.4 kernel...16
Windows 2000 and XP..16
MS Windows 95, 98 (and Me ?)...17

3.2 Assigning Resources by the BIOS..18

 Plug-and-Play-HOWTO

i

Table of Contents
 Plug-and-Play-HOWTO

3.3 Reset the configuration?...18
4. How to Deal with PnP Cards...19
4.1 Introduction to Dealing with PnP Devices...19
4.2 Device Driver Configures, Reserving Resources...19
4.3 /sys User Interface Configures..19
4.4 BIOS Configures...20

Intro to Using the BIOS to Configure PnP..20
 The BIOS's ESCD Database..20
 Using Windows to set the ESCD...21
Adding a New Device (under Linux or Windows)...22

4.5 ISA cards only: Disable PnP ?..22
4.6 ISA Bus: Isapnp (part of isapnptools)...22
4.7 PCI Utilities..23
4.8 Windows Configures..23
4.9 PnP Software/Documents...24
5. Tell the Driver the Configuration ??...24
5.1 Introduction..24
5.2 Serial Port Driver Example..25
6. How Do I Find Devices and How Are They Configured?..25
6.1 Finding and How-Configured Are Related..26
6.2 Devices May Have Two "Configurations"..26
6.3 Finding Hardware..26
6.4 Boot-time Messages..27
6.5 The /proc Tree...28
6.6 The /sys Tree...28
6.7 PCI Bus Inspection...29
6.8 ISA Bus Introduction..29
6.9 ISA PnP cards...29
6.10 LPC Bus..30
6.11 X-bus..30
6.12 Non-PnP Cards...30
6.13 Non-PnP Cards with jumpers...31
6.14 Neither PnP nor jumpers...31
6.15 Tools for Detecting and/or Configuring all Hardware..31
6.16 Tools for Detecting and Configuring One Type of Hardware..31
6.17 Use MS Windows...32
7. PCI Interrupts..32
7.1 Introduction..32
7.2 History: From ISA to PCI Interrupts...32
7.3 Advanced Programmable Interrupt Controller (APIC)..33
7.4 Message Signalled Interrupts (MSI)..33
7.5 Sharing PCI Interrupts...33
7.6 Looking at Routing Tables..34
7.7 For More Information..34
7.8 PCI Interrupt Linking...34
8. PnP for External and Plug-in Devices...35
8.1 USB Bus..35

 Plug-and-Play-HOWTO

ii

Table of Contents
 Plug-and-Play-HOWTO

8.2 Hot Plug...36
8.3 Hot Swap..36
8.4 PnP Finds Devices Plugged Into Serial Ports..36
9. Error Messages...36
9.1 Unexpected Interrupt...36
9.2 Plug and Play Configuration Error (Dell BIOS)..37
9.3 isapnp: Write Data Register 0xa79 already used (from logs)..37
9.4 Can't allocate region (PCI)...37
10. Interrupt Sharing and Interrupt Conflicts...37
10.1 Introduction..37
10.2 Real Interrupt Conflict...38
10.3 No Interrupt Available...38
11. Appendix..39
11.1 Universal Plug and Play (UPnP)...39
11.2 Address Details...39

Address ranges..39
Address space..40
 PCI Configuration Address Space..40
Range Check (ISA Testing for IO Address Conflicts)..41
Communicating Directly via Memory..41

11.3 ISA Bus Configuration Addresses (Read-Port etc.)...41
11.4 Interrupts --Details..42

Serialized Interrupts..42
DMA..42
Soft interrupts..42
Hardware interrupts...42

11.5 How the Device Driver Catches its Interrupt...43
11.6 ISA Isolation...43
11.7 Bus Mastering and DMA resources...44
11.8 Historical and Obsolete..44

OSS-Lite Sound Driver...44
ALSA (Advanced Linux Sound Architecture) as of 2000..44
MS Windows Notes...44

 Plug-and-Play-HOWTO

iii

Plug-and-Play-HOWTO

David S. Lawyer mailto:dave@lafn.org

v1.15, August 2007

Explains in detail low-level resources such as addresses, interrupts, etc. Covers both the PCI bus, which is
inherently Plug and Play (PnP) and PnP on the old ISA bus. If PnP did it's job right, you wouldn't need this
howto. But in case it doesn't, or if you have old hardware that doesn't use PnP for all the cards, then this
HOWTO should help. It doesn't cover what's called "Universal Plug and Play" (UPnP).

1. Introduction

1.1 1. Copyright, Trademarks, Disclaimer, & Credits•
1.2 Future Plans; You Can Help•
1.3 New Versions of this HOWTO•
1.4 New in Recent Versions•
1.5 General Introduction. Do you need this HOWTO?•

2. What PnP Should Do: Allocate "Bus-Resources"

2.1 What is Plug-and-Play (PnP)?•
2.2 Hardware Devices and Communication with them•
2.3 Addresses•
2.4 I/O Addresses (principles relevant to other resources too)•
2.5 Memory Ranges•
2.6 IRQs --Overview•
2.7 DMA (Direct Memory Access) or Bus Mastering•
2.8 DMA Channels (not for PCI bus)•
2.9 "Resources" for both Device and Driver•
2.10 Resources are Limited•
2.11 Second Introduction to PnP•
2.12 How Pnp Works (simplified)•
2.13 Starting Up the PC•
2.14 Buses•
2.15 How Linux Does PnP•
2.16 Problems with Linux PnP•

3. Setting up a PnP BIOS

3.1 Do you have a PnP operating system?•
3.2 Assigning Resources by the BIOS•
3.3 Reset the configuration?•

 Plug-and-Play-HOWTO 1

mailto:dave@lafn.org

4. How to Deal with PnP Cards

4.1 Introduction to Dealing with PnP Devices•
4.2 Device Driver Configures, Reserving Resources•
4.3 /sys User Interface Configures•
4.4 BIOS Configures•
4.5 ISA cards only: Disable PnP ?•
4.6 ISA Bus: Isapnp (part of isapnptools)•
4.7 PCI Utilities•
4.8 Windows Configures•
4.9 PnP Software/Documents•

5. Tell the Driver the Configuration ??

5.1 Introduction•
5.2 Serial Port Driver Example•

6. How Do I Find Devices and How Are They Configured?

6.1 Finding and How-Configured Are Related•
6.2 Devices May Have Two "Configurations"•
6.3 Finding Hardware•
6.4 Boot-time Messages•
6.5 The /proc Tree•
6.6 The /sys Tree•
6.7 PCI Bus Inspection•
6.8 ISA Bus Introduction•
6.9 ISA PnP cards•
6.10 LPC Bus•
6.11 X-bus•
6.12 Non-PnP Cards•
6.13 Non-PnP Cards with jumpers•
6.14 Neither PnP nor jumpers•
6.15 Tools for Detecting and/or Configuring all Hardware•
6.16 Tools for Detecting and Configuring One Type of Hardware•
6.17 Use MS Windows•

7. PCI Interrupts

7.1 Introduction•
7.2 History: From ISA to PCI Interrupts•
7.3 Advanced Programmable Interrupt Controller (APIC)•
7.4 Message Signalled Interrupts (MSI)•
7.5 Sharing PCI Interrupts•
7.6 Looking at Routing Tables•
7.7 For More Information•
7.8 PCI Interrupt Linking•

 Plug-and-Play-HOWTO

4. How to Deal with PnP Cards 2

8. PnP for External and Plug-in Devices

8.1 USB Bus•
8.2 Hot Plug•
8.3 Hot Swap•
8.4 PnP Finds Devices Plugged Into Serial Ports•

9. Error Messages

9.1 Unexpected Interrupt•
9.2 Plug and Play Configuration Error (Dell BIOS)•
9.3 isapnp: Write Data Register 0xa79 already used (from logs)•
9.4 Can't allocate region (PCI)•

10. Interrupt Sharing and Interrupt Conflicts

10.1 Introduction•
10.2 Real Interrupt Conflict•
10.3 No Interrupt Available•

11. Appendix

11.1 Universal Plug and Play (UPnP)•
11.2 Address Details•
11.3 ISA Bus Configuration Addresses (Read-Port etc.)•
11.4 Interrupts --Details•
11.5 How the Device Driver Catches its Interrupt•
11.6 ISA Isolation•
11.7 Bus Mastering and DMA resources•
11.8 Historical and Obsolete•

1. Introduction

1.1 1. Copyright, Trademarks, Disclaimer, & Credits

Copyright

Copyright (c) 1998-2007 by David S. Lawyer mailto:dave@lafn.org

Please freely copy and distribute (sell or give away) this document in any format. Send any corrections and
comments to the document maintainer. You may create a derivative work and distribute it provided that you:

If it's not a translation: Email a copy of your derivative work (in a format LDP accepts) to the
author(s) and maintainer (could be the same person). If you don't get a response then email the LDP
(Linux Documentation Project): submit@en.tldp.org.

1.

License the derivative work in the spirit of this license or use GPL. Include a copyright notice and at
least a pointer to the license used.

2.

 Plug-and-Play-HOWTO

8. PnP for External and Plug-in Devices 3

mailto:dave@lafn.org

Give due credit to previous authors and major contributors.3.

If you're considering making a derived work other than a translation, it's requested that you discuss your plans
with the current maintainer.

Disclaimer

While I haven't intentionally tried to mislead you, there are likely a number of errors in this document. Please
let me know about them. Since this is free documentation, it should be obvious that I cannot be held legally
responsible for any errors.

Trademarks.

Any brand names (starts with a capital letter such as MS Windows) should be assumed to be a trademark).
Such trademarks belong to their respective owners.

Credits

March 2000: Daniel Scott proofread this and found many typos, etc.•
June 2000: Pete Barrett gave a workaround to prevent Windows from zeroing PCI IRQs.•
August 2004: Ross Boylan found typos, etc. and pointed out lack of clarity in telling the BIOS if it's a
PnP OS

•

1.2 Future Plans; You Can Help

Please let me know of any errors in facts, opinions, logic, spelling, grammar, clarity, links, etc. But first, if the
date is over a several months old, check to see that you have the latest version. Please send me any info that
you think belongs in this document.

I haven't studied the code used by various Linux drivers and the kernel to implement Plug-and-Play. But I
have sampled a little of it (especially some of the comments). Thus this HOWTO is still incomplete. It needs
to explain more about "hot swapping", "hot-plug" and about the new PnP software for kernel 2.6. The history
of Linux PnP is not well covered. Also, it doesn't cover firewire. It likely has some inaccuracies (let me know
where I'm wrong). In this HOWTO I've sometimes used ?? to indicate that I don't really know the answer.

1.3 New Versions of this HOWTO

New versions of the Plug-and-Play-HOWTO should appear every year or so and will be available to browse
and/or download at LDP mirror sites. For a list of mirror sites see: http://tldp.org/mirrors.html. Various
formats are available. If you only want to quickly check the date of the latest version look at:
http://tldp.org/HOWTO/Plug-and-Play-HOWTO.html. The version you are now reading is: v1.15, August
2007 .

1.4 New in Recent Versions

For a full revision history going back to the first version see the source file (in linuxdoc format) at
http://cvsview.tldp.org/index.cgi/LDP/howto/linuxdoc/Plug-and-Play-HOWTO.sgml

 Plug-and-Play-HOWTO

Copyright 4

http://tldp.org/mirrors.html
http://tldp.org/HOWTO/Plug-and-Play-HOWTO.html
http://cvsview.tldp.org/index.cgi/LDP/howto/linuxdoc/Plug-and-Play-HOWTO.sgml

v1.15 Aug. 2007 Revised interrupt sections. Removed 2 redundant and confusing paragraphs
containing a mystery function "h()"

•

v1.14 Feb. 2006: Revised "How Linux Does PnP"; LPC was intended to be config. by the BIOS.
Balancing IRQs. Linux can find drivers for detected devices.

•

v1.13 July 2005: IRQ conflicts. Better clarity in resource descriptions. /proc/bus. PCI configuration
space accessed via IO address space. More hardware detection tools. "Can't allocate region" error
message.

•

v1.12 March 2005: /dev/eth0 doesn't exist anymore. Info in /sys and /proc changed for kernel 2.6. PCI
Config. address space is "geographic". scanpci may find a device that lspci can't. Kernel may assign
addresses at boot-time.

•

1.5 General Introduction. Do you need this HOWTO?

Plug-and-play (PnP) is a system which automatically detects devices such as disks, sound cards, ethernet
cards, modems, etc. It finds all devices on the PCI bus and all devices that support PnP on the old ISA bus.
Before PnP, many devices were automatically searched for by non-PnP methods, but were sometimes not
found. PnP provides a way to find all devices that support PnP. It also does some low-level configuring of
them. Non-PnP devices (or PnP devices which have not been correctly PnP-configured), can often be detected
by non-PnP methods. The PCI bus is inherently PnP while the old ISA bus originally wasn't PnP but had PnP
support added to it later. So sometimes PnP is used to only mean PnP for the old ISA bus. For example, when
you see a boot-time message from "isapnp" and it reads: "Plug & Play device" it only means an ISA Plug &
Play device. In this HOWTO, PnP means PnP for both the ISA and the PCI bus.

As time goes by the Linux kernel is became better at supporting PnP. In the late 20th century, one could say
that Linux was not really a PnP OS. But the claim is made that with version 2.6 of the kernel, Linux is now
fully PnP (provided the kernel is built with appropriate PnP support). While the PnP system is not centralized
like it is in MS Windows (with its registry) the decentralized Linux PnP seems to work OK.

Linux does keep track of resource assignments requested by device drivers and refuses any request if it thinks
it would cause a conflict. The kernel also provides programs that device drivers can call on to do their own
plug-and-play. The kernel also reads all configuration registers of all PnP devices and maintains tables of
them that device drivers can consult. This table helps drivers find their hardware. Kernel 2.6 provides better
support for "hot plug".

The BIOS hardware of your PC likely does some plug-and-play work too. Thus if everything works OK
PnP-wise, you can use your computer without needing to know anything about plug-and-play. But if some
devices which are supported by Linux don't work (because they're not discovered or configured correctly by
PnP) then you may need to read some of this HOWTO. You'll learn not only about PnP but also learn
something about how communication takes place inside the computer. If you have a modern computer with a
PCI bus but no ISA bus, you may skip over or skim the parts about the ISA bus.

If you're having problems with a device, watch the messages displayed at boot-time (go back thru them using
Shift-PageUp). If this doesn't also display early messages from the BIOS use the "Pause" key. See Pause

Check to see that you have the right driver for a device, and that the driver is being found and used. If the
driver is a module, type "lsmod" (as the root user) to see it it's loaded (in use). If it's not a module then it
should be built into the kernel.

This HOWTO doesn't cover the problem of finding and installing device drivers. Perhaps it should. One
problem is that a certain brand of a card (or other physical device) may not say what kind of chips are used in

 Plug-and-Play-HOWTO

1.4 New in Recent Versions 5

it. The driver name is often the same as the chip name and not the brand name. One way to start to check on a
driver is to see if it is discussed in the kernel documentation, in another HOWTO, or on the Internet. Warning:
Such documentation may be out of date.

The PCI bus computers (no ISA bus) have significantly reduced the number of things that can go wrong. For
the ISA bus and the lack of kernel support for ISA Pnp (before kernel 2.4), there was much more that could go
wrong. Remember that sometimes problems which seem to be PnP related are actually due to defective
hardware or to hardware that doesn't fully conform to PnP specs.

2. What PnP Should Do: Allocate "Bus-Resources"

2.1 What is Plug-and-Play (PnP)?

If you don't understand this section, read the next section Hardware Devices and Communication with them

Oversimplified, Plug-and-Play tells the software (device drivers) where to find various pieces of hardware
(devices) such as modems, network cards, sound cards, etc. Plug-and-Play's task is to match up physical
devices with the software (device drivers) that operates them and to establish channels of communication
between each physical device and its driver. In order to achieve this, PnP allocates and sets the following
"bus-resources" in hardware: I/O addresses, memory regions, IRQs, DMA channels (LPC and ISA buses
only). These 4 things are sometimes called "1st order resources" or just "resources". Pnp maintains a record of
what it's done and allows device drivers to get this information. If you don't understand what these 4
bus-resources are, read the following subsections of this HOWTO: I/O Addresses, IRQs, DMA Channels,
Memory Regions. An article in Linux Gazette regarding 3 of these bus-resources is Introduction to IRQs,
DMAs and Base Addresses. Once these bus-resources have been assigned (and if the correct driver is
installed), the actual driver and the "files" for it in the /dev directory are ready to use.

This PnP assignment of bus-resources is sometimes called "configuring" but it is only a low level type of
configuring. The /etc directory has many configuration files but most all of them are not for PnP configuring.
So most of the configuring of hardware devices has nothing to do with PnP or bus-resources. For, example the
initializing of a modem by an "init string" or setting it's speed is not PnP. Thus when talking about PnP,
"configuring" means only a certain type of configuring. While other documentation (such as for MS
Windows) simply calls bus-resources "resources", I sometimes use the term "bus-resources" instead of just
"resources" so as to distinguish it from the multitude of other kinds of resources.

PnP is a process which is done by various software and hardware. If there was just one program that handled
PnP in Linux, it would be simple. But with Linux each device driver does it's own PnP, using software
supplied by the kernel. The BIOS hardware of the PC does PnP when a PC is first powered up. And there's a
lot more to it than this.

2.2 Hardware Devices and Communication with them

A computer consists of a CPU/processor to do the computing and RAM memory to store programs and data
(for fast access). In addition, there are a number of devices such as various kinds of disk-drives, a video card,
a keyboard, network devices, modem cards, sound devices, the USB bus, serial and parallel ports, etc. In
olden days most devices were on cards inserted into slots in the PC. Today, many devices that were formerly
cards, are now on-board since they are contained in chips on the motherboard. There is also a power supply to
provide electric energy, various buses on a motherboard to connect the devices to the CPU, and a case to put
all this into.

 Plug-and-Play-HOWTO

1.5 General Introduction. Do you need this HOWTO? 6

http://www.linuxgazette.com/issue38/blanchard.html
http://www.linuxgazette.com/issue38/blanchard.html

Cards which plug into the motherboard may contain more than one device. Memory chips are also sometimes
considered to be devices but are not plug-and-play in the sense used in this HOWTO.

For the computer system to work right, each device must be under the control of its "device driver". This is
software which is a part of the operating system (perhaps loaded as a module) and runs on the CPU. Device
drivers are associated with "special files" in the /dev directory although they are not really files. They have
names such as hda3 (third partition on hard drive a), ttyS1 (the second serial port), eth0 (the first ethernet
card), etc.

The eth0 device is for an ethernet card (nic card). Formerly it was /dev/eth0 but it's now just a virtual device
in the kernel. What eth0 refers to depends on the type of ethernet card you have. If the driver is a module, this
assignment is likely in an internal kernel table but might be found in /etc/modules.conf (called "alias"). For
example, if you have an ethernet card that uses the "tulip" chip you could put "alias eth0 tulip" into
/etc/modules.conf so that when your computer asks for eth0 it finds the tulip driver. However, modern kernels
can usually find the right driver module so that you seldom need to specify it yourself.

To control a device, the CPU (under the control of the device driver) sends commands and data to, and reads
status and data from the various devices. In order to do this each device driver must know the address of the
device it controls. Knowing such an address is equivalent to setting up a communication channel, even though
the physical "channel" is actually the data bus inside the PC which is shared with many other devices.

This communication channel is actually a little more complex than described above. An "address" is actually a
range of addresses so that sometimes the word "range" is used instead of "address". There could even be more
that one range (with no overlapping) for a single device. Also, there is a reverse part of the channel (known as
interrupts) which allows devices to send an urgent "help" request to their device driver.

2.3 Addresses

The PCI bus has 3 address spaces: I/O, main memory (IO memory), and configuration. The old ISA bus lacks
a genuine "configuration" address space. Only the I/0 and IO memory spaces are used for device IO.
Configuration addresses are fixed and can't be changed so they don't need to be allocated. For more details see
PCI Configuration Address Space

When the CPU wants to access a device, it puts the device's address on a major bus of the computer (for PCI:
the address/data bus). All types of addresses (such as both I/O and main memory) share the same bus inside
the PC. But the presence or absence of voltage on certain dedicated wires in the PC's bus tells which "space"
an address is in: I/O, main memory, (see Memory Ranges), or configuration (PCI only). This is a little
oversimplified since telling a PCI device that it's a configuration space access is actually more complex than
described above. See PCI Configuration Address Space for details. See Address Details for more details on
addressing in general.

The addresses of a device are stored in it's registers in the physical device. They can be changed by software
and they can be disabled so that the device has no address at all. Except that the PCI configuration address
can't be changed or disabled.

2.4 I/O Addresses (principles relevant to other resources
too)

 Plug-and-Play-HOWTO

2.2 Hardware Devices and Communication with them 7

Devices were originally located in I/O address space but today they may use space in main memory. An I/0
address is sometimes just called "I/O", "IO", "i/o" or "io". The terms "I/O port" or "I/O range" are also used.
Don't confuse these IO ports with "IO memory" located in main memory. There are two main steps to allocate
the I/O addresses (or some other bus-resources such as interrupts on the ISA bus):

Set the I/O address, etc. in the hardware (in one of its registers)1.
Let its device driver know what this I/O address, etc. is2.

Often, the device driver does both of these (sort of). The device driver doesn't actually need to set an I/O
address if it finds out that the address has been previously set (perhaps by the BIOS) and is willing to accept
that address. Once the driver has either found out what address has been previously set or sets the address
itself, then it obviously knows what the address is so there is no need to let the driver know the address --it
already knows it.

The two step process above (1. Set the address in the hardware. 2. Let the driver know it.) is something like
the two part problem of finding someone's house number on a street. Someone must install a number on the
front of the house so that it may be found and then people who might want to go to this address must obtain
(and write down) this house number so that they can find the house. For computers, the device hardware must
first get its address put into a special register in its hardware (put up the house number) and then the device
driver must obtain this address (write the house number in its address book). Both of these must be done,
either automatically by software or by entering the data manually into configuration files. Problems may occur
when only one of them gets done right.

For manual PnP configuration some people make the mistake of doing only one of these two steps and then
wonder why the computer can't find the device. For example, they may use "setserial" to assign an address to
a serial port without realizing that this only tells the driver an address. It doesn't set the address in the serial
port hardware itself. If you told the driver wrong then you're in trouble. Another way to tell the driver is to
give the address as an option to a kernel module (device driver). If what you tell it is wrong, there could be
problems. A smart driver may detect how the hardware is actually set and reject the incorrect information
supplied by the option (or at least issue an error message).

An obvious requirement is that before the device driver can use an address it must be first set in the physical
device (such as a card). Since device drivers often start up soon after you start the computer, they sometimes
try to access a card (to see if it's there, etc.) before the address has been set in the card by a PnP configuration
program. Then you see an error message that they can't find the card even though it's there (but doesn't yet
have an address yet).

What was said in the last few paragraphs regarding I/O addresses applies with equal force to most other
bus-resources: Memory Ranges, IRQs --Overview and DMA Channels. What these are will be explained in
the next 3 sections. The exception is that interrupts on the PCI bus are not set by card registers but are instead
routed (mapped) to IRQs by a chip on the motherboard. Then the IRQ a PCI card is routed to is written into
the card's register for information purposes only.

To see what IO addresses are used on your PC, look at the /proc/ioports file.

2.5 Memory Ranges

Many devices are assigned address space in main memory. It's sometimes called "shared memory" or
"memory-mapped IO" or "IO memory". This memory is physically located inside the physical device but the
computer accesses it just like it would access memory on memory chips. When discussing bus-resources it's

 Plug-and-Play-HOWTO

2.4 I/O Addresses (principles relevant to other resourcestoo) 8

often just called "memory", "mem", or "iomem". In addition to using such "memory", such a device might
also use conventional IO address space. To see what mem is in use on your computer, look at /proc/iomem.
This "file" includes the memory used by your ordinary RAM memory chips so it shows memory allocation in
general and not just iomem allocation. If you see a strange number instead of a name, it's likely the number of
a PCI device which you can verify by typing "lspci".

When you insert a card that uses iomem, you are in effect also inserting a memory module for main memory.
A high address is selected for it by PnP so that it doesn't conflict with the main memory modules (chips). This
memory can either be ROM (Read Only Memory) or shared memory. Shared memory is shared between the
device and the CPU (running the device driver) just as IO address space is shared between the device and the
CPU. This shared memory serves as a means of data "transfer" between the device and main memory. It's
Input-Output (IO) but it's not done in IO space. Both the card and the device driver need to know the memory
range.

ROM (Read Only Memory) on cards is a different kind of iomem. It is likely a program (perhaps a device
driver) which will be used with the device. It could be initialization code so that a device driver is still
required. Hopefully, it will work with Linux and not just MS Windows. It may need to be shadowed which
means that it is copied to your main memory chips in order to run faster. Once it's shadowed it's no longer
"read only".

2.6 IRQs --Overview

After reading this you may want to read Interrupts --Details for many more details. The following is
intentionally oversimplified: Besides the address, there is also an interrupt number to deal with (such as IRQ
5). It's called an IRQ (Interrupt ReQuest) number or just an "irq" for short. We already mentioned above that
the device driver must know the address of a card in order to be able to communicate with it.

But what about communication in the opposite direction? Suppose the device needs to tell its device driver
something immediately. For example, the device may be receiving a lot of bytes destined for main memory
and its buffer used to store these bytes is almost full. Thus the device needs to tell its driver to fetch these
bytes at once before the buffer overflows from the incoming flow of bytes. Another example is to signal the
driver that the device has finished sending out a bunch of bytes and is now waiting for some more bytes from
the driver so that it can send them too.

How should the device rapidly signal its driver? It may not be able to use the main data bus since it's likely
already in use. Instead it puts a voltage on a dedicated interrupt wire (also called line or trace) which is often
reserved for that device alone. This voltage signal is called an Interrupt ReQuest (IRQ) or just an "interrupt"
for short. There are the equivalent of 16 (or 24, etc.) such wires in a PC and each wire leads (indirectly) to a
certain device driver. Each wire has a unique IRQ (Interrupt ReQuest) number. The device must put its
interrupt on the correct wire and the device driver must listen for the interrupt on the correct wire. Which wire
the device sends such "help requests" on is determined by the IRQ number stored in the device. This same
IRQ number must be known to the device driver so that the device driver knows which IRQ line to listen on.

Once the device driver gets the interrupt from the device it must find out why the interrupt was issued and
take appropriate action to service the interrupt. On the ISA bus, each device usually needs its own unique IRQ
number. For the PCI bus and other special cases, the sharing of IRQs is allowed (two or more PCI devices
may have the same IRQ number). Also, for PCI, each PCI device has a fixed "PCI Interrupt" wire. But a
programmable routing chip maps the PCI wires to ISA-type interrupts. See Interrupts --Details for details on
how all the above works.

 Plug-and-Play-HOWTO

2.5 Memory Ranges 9

2.7 DMA (Direct Memory Access) or Bus Mastering

For the PCI bus, DMA and Bus Mastering mean the same thing. Prior to the PCI bus, Bus Mastering was rare
and DMA worked differently and was slow. Direct Memory Access (DMA) is where a device is allowed to
take over the main computer bus from the CPU and transfer bytes directly to main memory or to some other
device. Normally the CPU would make a transfer from a device to main memory in a two step process:

reading a chunk of bytes from the I/O memory space of the device and putting these bytes into CPU
itself

1.

writing these bytes from the CPU to main memory2.

With DMA it's a one step process of sending the bytes directly from the device to memory. The device must
have DMA capabilities built into its hardware and thus not all devices can do DMA. While DMA is going on,
the CPU can't do too much since the main bus is being used by the DMA transfer.

The old ISA bus can do slow DMA while the PCI bus does "DMA" by Bus Mastering. The LPC bus has both
the old DMA and the new DMA (bus mastering). On the PCI bus, what more precisely should be called "bus
mastering" is often called "Ultra DMA", "BM-DNA", "udma", or just "DMA", Bus mastering allows devices
to temporarily become bus masters and to transfer bytes almost like the bus master was the CPU. It doesn't
use any channel numbers since the organization of the PCI bus is such that the PCI hardware knows which
device is currently the bus master and which device is requesting to become a bus master. Thus there is no
resource allocation of DMA channels for the PCI bus and no dma channel resources exist for this bus. The
LPC (Low Pin Count) bus is supposed to be configured by the BIOS so users shouldn't need to concern
themselves with its DMA channels.

2.8 DMA Channels (not for PCI bus)

This is only for the LPC bus and the old ISA bus. When a device wants to do DMA it issues a DMA-request
using dedicated DMA request wires much like an interrupt request. DMA actually could have been handled
by using interrupts but this would introduce some delays so it's faster to do it by having a special type of
interrupt known as a DMA-request. Like interrupts, DMA-requests are numbered so as to identify which
device is making the request. This number is called a DMA-channel. Since DMA transfers all use the main
bus (and only one can run at a time) they all actually use the same channel for data flow but the "DMA
channel" number serves to identify who is using the "channel". Hardware registers exist on the motherboard
which store the current status of each "channel". Thus in order to issue a DMA-request, the device must know
its DMA-channel number which must be stored in a special register on the physical device.

2.9 "Resources" for both Device and Driver

Thus device drivers must be "attached" in some way to the hardware they control. This is done by allocating
bus-resources (I/O, Memory, IRQ's, DMA's) to both the physical device and letting the device driver to find
out about it. For example, a serial port uses only 2 resources: an IRQ and an I/O address. Both of these values
must be supplied to the device driver and the physical device. The driver (and its device) is also given a name
in the /dev directory (such as ttyS1). The address and IRQ number is stored by the physical device in
configuration registers on its card (or in a chip on the motherboard). Old hardware (in the mid 1990's) used
switches (or jumpers) to physically set the IRQ and address in the hardware. This setting remained fixed until
someone remover the computer's cover and moved the jumpers.

 Plug-and-Play-HOWTO

 2.7 DMA (Direct Memory Access) or Bus Mastering 10

But for the case of PnP (no jumpers), the configuration register data is usually lost when the PC is powered
down (turned off) so that the bus-resource data must be supplied to each device anew each time the PC is
powered on.

2.10 Resources are Limited

Ideal Computers

The architecture of the PC provides only a limited number of resources: IRQ's, DMA channels, I/O address,
and memory regions. If there were only a limited number devices and they all used standardized bus-resources
values (such as unique I/O addresses and IRQ numbers) there would be no problem of attaching device
drivers to devices. Each device would have a fixed resources which would not conflict with any other device
on your computer. No two devices would have the same addresses, there would be no IRQ conflicts on the
ISA bus, etc. Each driver would be programmed with the unique addresses, IRQ, etc. hard-coded into the
program. Life would be simple.

Another way to prevent address conflicts would be to have each card's slot number included as part of the
address. Thus there could be no address conflict between two different cards (since they are in different slots).
Card design would not allow address conflicts between different functions of the card. It turns out that the
configuration address space (used for resource inquiry and assignment) actually does this. But it's not done for
I/O addresses nor memory regions. Sharing IRQs as on the PCI bus also avoids conflicts but may cause other
problems.

Real Computers

But PC architecture has conflict problems. The increase in the number of devices (including multiple devices
of the same type) has tended to increase potential conflicts. At the same time, the introduction of the PCI bus,
where two or more devices can share the same interrupt and the introduction of more interrupts, has tended to
reduce conflicts. The overall result, due to going to PCI, has been a reduction in conflicts since the scarcest
resource is IRQs. However, even on the PCI bus it's more efficient to avoid IRQ sharing. In some cases where
interrupts happen in rapid succession and must be acted on fast (like audio) sharing can cause degradation in
performance. So it's not good to assign all PCI devices the same IRQ, the assignment needs to be balanced.
Yet some people find that all their PCI devices are on the same IRQ.

So devices need to have some flexibility so that they can be set to whatever address, IRQ, etc. is needed to
avoid any conflicts and achieve balancing. But some IRQ's and addresses are pretty standard such as the ones
for the clock and keyboard. These don't need such flexibility.

Besides the problem of conflicting allocation of bus-resources, there is a problem of making a mistake in
telling the device driver what the bus-resources are. This is more likely to happen for the case of
old-fashioned manual configuration where the user types in the resources used into a configuration file stored
on the harddrive. This often worked OK when resources were set by jumpers on the cards (provided the user
knew how they were set and made no mistakes in typing this data to configuration files). But with resources
being set by PnP software, they may not always get set the same and this may mean trouble for any manual
configuration where the user types in the values of bus-resources that were set by PnP.

The allocation of bus-resources, if done correctly, establishes non-conflicting channels of communication
between physical hardware and their device drivers. For example, if a certain I/O address range (resource) is
allocated to both a device driver and a piece of hardware, then this has established a one-way communication
channel between them. The driver may send commands and other info to the device. It's actually more than

 Plug-and-Play-HOWTO

2.9 "Resources" for both Device and Driver 11

one-way communications since the driver may get information from the device by reading its registers. But
the device can't initiate any communication this way. To initiate communication the device needs an IRQ so it
can send interrupts to its driver. This creates a two-way communication channel where both the driver and the
physical device can initiate communication.

2.11 Second Introduction to PnP

The term Plug-and-Play (PnP) has various meanings. In the broad sense it is just auto-configuration where one
just plugs in a device and it configures itself. In the sense used in this HOWTO, PnP means the configuring
PnP bus-resources (setting them in the physical devices) and letting the device drivers know about it. For the
case of Linux, it is often just a driver determining how the BIOS has set bus-resources and if necessary, the
driver giving a command to change (reset) the bus-resources. "PnP" often just means PnP on the ISA bus so
that the message from isapnp: "No Plug and Play device found" just means that no ISA PnP devices were
found. The standard PCI specifications (which were invented before coining the term "PnP") provide the
equivalent of PnP for the PCI bus.

PnP matches up devices with their device drivers and specifies their communication channels (by allocating
bus-resources). It electronically communicates with configuration registers located inside the physical devices
using a standardized protocol. On the ISA bus before Plug-and-Play, the bus-resources were formerly set in
hardware devices by jumpers or switches. Sometimes the bus-resources could be set into the hardware
electronically by a driver (usually written only for a MS OS but in rare cases supported by a Linux driver).
This was something like PnP but there was no standardized protocol used so it wasn't really PnP. Some cards
had jumper setting which could be overridden by such software. For Linux before PnP, most software drivers
were assigned bus-resources by configuration files (or the like) or by probing the for the device at addresses
where it was expected to reside. But these methods are still in use today to allow Linux to use old non-PnP
hardware. And sometimes these old methods are still used today on PnP hardware (after say the BIOS has
assigned resources to hardware by PnP methods).

The PCI bus was PnP-like from the beginning, but it's not usually called PnP or "plug and play" with the
result that PnP often means PnP on the ISA bus. But PnP in this documents usually means PnP on either the
ISA or PCI bus.

2.12 How Pnp Works (simplified)

Here's how PnP should work in theory. The hypothetical PnP configuration program finds all PnP devices and
asks each what bus-resources it needs. Then it checks what bus-resources (IRQs, etc.) it has to give away. Of
course, if it has reserved bus-resources used by non-PnP (legacy) devices (if it knows about them) it doesn't
give these away. Then it uses some criteria (not specified by PnP specifications) to give out the bus-resources
so that there are no conflicts and so that all devices get what they need (if possible). It then indirectly tells
each physical device what bus-resources are assigned to it and the devices set themselves up to use only the
assigned bus-resources. Then the device drivers somehow find out what bus-resources their devices use and
are thus able to communicate effectively with the devices they control.

For example, suppose a card needs one interrupt (IRQ number) and 1 MB of shared memory. The PnP
program reads this request from the configuration registers on the card. It then assigns the card IRQ5 and 1
MB of memory addresses space, starting at address 0xe9000000. The PnP program also reads identifying
information from the card telling what type of device it is, its ID number, etc. Then it directly or indirectly
tells the appropriate device driver what it's done. If it's the driver itself that is doing the PnP, then there's no
need to find a driver for the device (since it's driver is already running). Otherwise a suitable device driver
needs to be found and sooner or later told how it's device is configured.

 Plug-and-Play-HOWTO

Real Computers 12

It's not always this simple since the card (or routing table for PCI) may specify that it can only use certain IRQ
numbers or that the 1 MB of memory must lie within a certain range of addresses. The details are different for
the PCI and ISA buses with more complexity on the ISA bus.

One way commonly used to allocate resources is to start with one device and allocate it bus-resources. Then
do the same for the next device, etc. Then if finally all devices get allocated resources without conflicts, then
all is OK. But if allocating a needed resource would create a conflict, then it's necessary to go back and try to
make some changes in previous allocations so as to obtain the needed bus-resource. This is called rebalancing.
Linux doesn't do rebalancing but MS Windows does in some cases. For Linux, all this is done by the BIOS
and/or kernel and/or device drivers. In Linux, the device driver doesn't get it's final allocation of resources
until the driver starts up, so one way to avoid conflicts is just not to start any device that might cause a
conflict. However, the BIOS often allocates resources to the physical device before Linux is even booted and
the kernel checks PCI devices for addresses conflicts at boot-time.

There are some shortcuts that PnP software may use. One is to keep track of how it assigned bus-resources at
the last configuration (when the computer was last used) and reuse this. BIOSs do this as does MS Windows
and this but standard Linux doesn't. But in a way it does since it often uses what the BIOS has done. Windows
stores this info in its "Registry" on the hard disk and a PnP/PCI BIOS stores it in non-volatile memory in your
PC (known as ESCD; see The BIOS's ESCD Database). Some say that not having a registry (like Linux) is
better since with Windows, the registry may get corrupted and is difficult to edit. But PnP in Linux has
problems too.

While MS Windows (except for Windows 3.x and NT4) were PnP, Linux was not originally a PnP OS but has
been gradually becoming a PnP OS. PnP originally worked for Linux because a PnP BIOS would configure
the bus-resources and the device drivers would find out (using programs supplied by the Linux kernel) what
the BIOS has done. Today, most drivers can issue commands to do their own bus-resource configuring and
don't need to always rely on the BIOS. Unfortunately a driver could grab a bus-resource which another device
will need later on. Some device drivers may store the last configuration they used in a configuration file and
use it the next time the computer is powered on.

If the device hardware remembered its previous configuration, then there wouldn't be any hardware to PnP
configure at the next boot-time. But hardware seems to forget its configuration when the power is turned off.
Some devices contain a default configuration (but not necessarily the last one used). Thus a PnP device needs
to be re-configured each time the PC is powered on. Also, if a new device has been added, then it too needs to
be configured too. Allocating bus-resources to this new device might involve taking some bus-resources away
from an existing device and assigning the existing device alternative bus-resources that it can use instead. At
present, Linux can't allocate with this sophistication (and MS Windows XP may not be able to do it either).

2.13 Starting Up the PC

When the PC is first turned on the BIOS chip runs its program to get the computer started (the first step is to
check out the motherboard hardware). If the operating system is stored on the hard-drive (as it normally is)
then the BIOS must know about the hard-drive. If the hard-drive is PnP then the BIOS may use PnP methods
to find it. Also, in order to permit the user to manually configure the BIOS's CMOS and respond to error
messages when the computer starts up, a screen (video card) and keyboard are also required. Thus the BIOS
must always PnP-configure devices needed to load the operating system from the hard-drive.

Once the BIOS has identified the hard-drive, the video card, and the keyboard it is ready to start booting
(loading the operating system into memory from the hard-disk). If you've told the BIOS that you have a PnP
operating system (PnP OS), it should start booting the PC as above and let the operating system finish the PnP

 Plug-and-Play-HOWTO

2.12 How Pnp Works (simplified) 13

configuring. Otherwise, a PnP-BIOS will (prior to booting) likely try to do the rest of the PnP configuring of
devices (but not inform the device drivers of what it did). But the drivers can still find out this by utilizing
functions available in the Linux kernel.

2.14 Buses

To see what's on the PCI bus type lspci or lspci -vv. Or type scanpci -v for the same information
in the numeric code format where the device is shown by number (such as: "device 0x122d" instead of by
name, etc. In rare cases, scanpci will find a device that lspci can't find.

The boot-time messages on your display show devices which have been found on various buses (use
shift-PageUp to back up thru them). See Boot-time Messages

ISA is the old bus of the old IBM-compatible PCs while PCI is a newer and faster bus from Intel. The PCI bus
was designed for what is today called PnP. This makes it easy (as compared to the ISA bus) to find out how
PnP bus-resources have been assigned to hardware devices.

For the ISA bus there was a real problem with implementing PnP since no one had PnP in mind when the ISA
bus was designed and there are almost no I/O addresses available for PnP to use for sending configuration info
to a physical device. As a result, the way PnP was shoehorned onto the ISA bus is very complicated. Whole
books have been written about it. See PnP Book. Among other things, it requires that each PnP device be
assigned a temporary "handle" by the PnP program so that one may address it for PnP configuring. Assigning
these "handles" is call "isolation". See ISA Isolation for the complex details.

As the ISA bus becomes extinct, PnP will be a little easier. It will then not only be easier to find out how the
BIOS has configured the hardware, but there will be less conflicts since PCI can share interrupts. There will
still be the need to match up device drivers with devices and also a need to configure devices that are added
when the PC is up and running. The serious problem of some devices not being supported by Linux will
remain.

2.15 How Linux Does PnP

Linux has had serious problems in the past in dealing with PnP but most of those problems have now been
solved (as of mid 2004). Linux has gone from a non-PnP system originally, to one that can be PnP if certain
options are selected when compiling the kernel. The BIOS may assign IRQs but Linux may also assign some
of them or even reassign what the BIOS did. The configuration part of ACPI (Advance Configuration and
Power Interface) is designed to make it easy for operating systems to do their own configuring. Linux can use
ACPI if it's selected when the kernel is compiled.

In Linux, it's traditional for each device driver to do it's own low level configuring. This was difficult until
Linux supplied software in the kernel that the drivers could use to make it easier on them. Today (2005) it has
reached the point where the driver simply calls the kernel function: pci_enable_device() and the device gets
configured by being enabled and having both an irq (if needed) and addresses assigned to the device. This
assignment could be what was previously assigned by the BIOS or what the kernel had previously reserved
for it when the pci or isapnp device was detected by the kernel. There's even an ACPI option for Linux to
assign all devices IRQs at boot-time.

So today, in a sense, the drivers are still doing the configuring but they can do it by just telling Linux to do it
(and Linux may not need to do much since it sometimes is able to use what has already been set by the BIOS
or Linux). So it's really the non-device-driver part of the Linux kernel that is doing most of the configuring.

 Plug-and-Play-HOWTO

2.13 Starting Up the PC 14

Thus, it may be correct to call Linux a PnP operating system, at least for common computer architectures.

Then when a device driver finds its device, it asks to see what addresses and IRQ have been assigned (by the
BIOS and/or Linux) and normally just accepts them. But if the driver wants to do so, it can try to change the
addresses, using functions supplied by the kernel. But the kernel will not accept addresses that conflict with
other devices or ones that the hardware can't support. When the PC starts up, you may note messages on the
screen showing that some Linux device drivers have found their hardware devices and what the IRQ and
address ranges are.

Thus, the kernel provides the drivers with functions (program code) that the drivers may use to find out if their
device exists, how it's been configured, and functions to modify the configuration if needed. Kernel 2.2 could
do this only for the PCI bus but Kernel 2.4 had this feature for both the ISA and PCI buses (provided that the
appropriate PNP and PCI options have been selected when compiling the kernel). Kernel 2.6 came out with
better utilization of ACPI. This by no means guarantees that all drivers will fully and correctly use these
features. And legacy devices that the BIOS doesn't know about, may not get configured until you (or some
configuration utility) puts its address, irq, etc. into a configuration file.

In addition, the kernel helps avoid resource conflicts by not allowing two devices that it knows about to use
the same bus-resources at the same time. Originally this was only for IRQs, and DMAs but now it's for
address resources as well.

If your have an old ISA bus, the program isapnp should run at boottime to find and configure pnp devices on
the ISA bus. Look at the messages with "dmesg".

To see what help the kernel may provide to device drivers see the directory /usr/.../.../Documentation where
one of the ... contains the word "kernel-doc" or the like. Warning: documentation here tends to be out-of-date
so to get the latest info you would need to read messages on mailing lists sent by kernel developers and
possibly the computer code that they write including comments. In this kernel documentation directory see
pci.txt ("How to Write Linux PCI Drivers") and the file: /usr/include/linux/pci.h. Unless you are a driver guru
and know C Programming, these files are written so tersely that they will not actually enable you to write a
driver. But it will give you some idea of what PnP type functions are available for drivers to use.

For kernel 2.4 see isapnp.txt. For kernel 2.6, isapnp.txt is replaced by pnp.txt which is totally different than
isapnp.txt and also deals with the PCI bus. Also see the O'Reilly book: Linux Device Drivers, 3rd ed., 2005.
The full text is on the Internet.

2.16 Problems with Linux PnP

But there are a number of things that a real PnP operating system could handle better:

Allocate bus-resources when they are in short supply by reallocation of resources if necessary•
Deal with choosing a driver when there is more than one driver for a physical device•

Since it's each driver for itself, a driver could grab bus-resources that are needed by other devices (but not yet
allocated to them by the kernel). Thus a more sophisticated PnP Linux kernel would be better, where the
kernel did the allocation after all requests were in. Another alternative would be a try to reallocate resources
already assigned if a devices couldn't get the resources it requested.

The "shortage of bus-resources" problem is becoming less of a problem for two reasons: One reason is that the
PCI bus is replacing the ISA bus. Under PCI there is no shortage of IRQs since IRQs may be shared (even

 Plug-and-Play-HOWTO

2.15 How Linux Does PnP 15

though sharing is a little less efficient). Also, PCI doesn't use DMA resources (although it does the equivalent
of DMA without needing such resources).

The second reason is that more address space is available for device I/0. While the conventional I/O address
space of the ISA bus was limited to 64KB, the PCI bus has 4GB of it. Since more physical devices are using
main memory addresses instead of IO address space, there is still more space available, even on the ISA bus.
On 32-bit PCs there is 4GB of main memory address space and much of this bus-resource is available for
device IO (unless you have 4GB of main memory installed).

There was at least one early attempt to make Linux a truly PnP operating system. See
http://www.astarte.free-online.co.uk. While developed around 1998 it never was put into the kernel (but
probably should have been).

3. Setting up a PnP BIOS

When the computer is first turned on, the BIOS program runs before the operating system is loaded. Modern
BIOSs are PnP and can configure most of the PnP devices. Some old PCI BIOSs will only configure the PCI
bus. Here are some of the choices which may exist in your BIOS's CMOS menu:

Do you have a PnP operating system?•
How are bus-resources to be controlled?•
Reset the configuration?•

3.1 Do you have a PnP operating system?

Regardless of how you answer this to the BIOS, the PnP BIOS will PnP-configure the hard-drive, floppy,
video card, and keyboard to make the system bootable as well as configure the LPC bus (if you have one). If
you said no PnP OS then the BIOS should configure everything.

How should you answer this question to your BIOS? If you have at at least the 2.4 kernel you could answer it
either way and Linux will usually work fine. Even if you have have Windows 2000 or XP on the same PC, it
will usually work OK either way. This is because both Windows and Linux are supposedly PnP OS's and if
the OS is PnP it should be able to also handle the case where the BIOS has configured everything (if you said
it wasn't PnP). But I still suggest saying that it's not a PnP OS unless there is a known reason to say otherwise.

Linux prior to the 2.4 kernel

It's not often clear whether to say yes or no. If isapnp was used by Linux, then Linux does the configuring and
it was claimed that it's best to say it's a PnP OS. Why isapnp would have trouble when presented with devices
already configured by the BIOS isn't clear, but such trouble sometimes happened and was fixed by stopping
the BIOS from configuring (saying yes, it's a PnP OS). There were a few cases where saying no fixed a
problem. So if isapnp is doing it's job OK, you should probably say it's PnP. If isapnp isn't used, no is usually
best. The Linux device drivers for PCI devices should configure PCI devices OK. But for the case of PCI
devices driven by non-PCI drivers, then you may say it's not PnP to get the BIOS to configure them.

Windows 2000 and XP

If you also run these Windows OS's on the same PC, you should say that you don't have a PnP OS. That's
what MS suggests you do. Perhaps MS hopes that the BIOS will do a better job at configuring than Windows

 Plug-and-Play-HOWTO

2.16 Problems with Linux PnP 16

http://www.astarte.free-online.co.uk

will. That makes sense because the BIOS should be designed for the particular idiosyncrasies of the
motherboard, especially today when many devices are built into the motherboard. PnP OS = no should also be
OK for Linux kernels 2.4 and higher. But for Linux kernel prior to 2.4, it's not clear which is best. (see the
above subsection). So if you have problems with Linux you might try saying you have a PnP OS to satisfy
Linux but this is going against what MS suggest (but will probably work OK anyway).

When the BIOS configures a device different from what Windows has in it's registry, Windows will tell you
that it's finding new hardware. What it's really doing is finding old hardware that has been configured
differently so it thinks it's new hardware. At any rate, it records the configuration that the BIOS has used in its
registry and the device should work OK from now on.

MS Windows 95, 98 (and Me ?)

For Windows9x, MS suggest that you tell the BIOS that you have a PnP OS (the exact opposite of the case for
Windows 2000 and XP). This should also be OK for Linux if you have kernel 2.4 or later. But if you have a
Linux kernel prior to 2.4 then it's best for Linux to say that it's not a PnP OS. One way to resolve this dilemma
is to set it up for the OS you use more frequently. Then when you boot the other OS, manually go into the
BIOS and change the setting. This is a lot of bother but it's feasible if you almost never use one of the OS's.
Otherwise there are better ways to resolved this dilemma.

The second way to resolve this dilemma is to get Linux to resource-configure everything. See Linux prior to
the 2.4 kernel. Then you tell the BIOS it's a PnP OS.

The third way to resolve this dilemma is to tell the BIOS it's not a PnP OS. This is going against what MS
says you should do, but it's possible to get MS Windows9x to work OK if you understand what to do (and
why). If you tell the BIOS it's not a PnP OS, shouldn't MS Windows detect how the BIOS has configured
things and change it if it doesn't like what the BIOS has done? It should, but unfortunately, it doesn't seem to
work this way.

What Windows9x seems to do when it finds hardware that is already configured by the BIOS is to just leave it
alone and not reconfigure it. Now Windows9x keeps a record of the bus-resource configuration in its registry.
If the BIOS configuration is different, it should either correct what's in its registry to conform to what the
BIOS has set or reconfigure everything per what's in the registry. Bad news. It seems to do neither and thinks
the actual configuration is the same as in the registry when in fact it's different.

But if the registry happens to contain a bus-resource configuration that is exactly the same as how the BIOS
configures things, then everything will obviously work OK. A device will thus work fine if the BIOS has
configured it the same as recorded in the registry. So the way to get MS Windows to work OK is to get the
registry in sync with how the BIOS configures. As mentioned previously, the BIOS configures things per its
ESCD (which is something like the registry for the BIOS). See The BIOS's ESCD Database. So we need to
get the registry in sync with the BIOS's ESCD so that the registry and the ESCD contain the same
configuration. In some cases, these two just happen to be in sync and you don't need to do anything.

One question you may think of is: how did the BIOS's ESCD and Windows registry ever get out of sync in the
first place? Here's one scenario. You install Windows with the BIOS set to a PnP OS. Then Windows
configures most everything and saves that configuration in its registry. Then later on you change the BIOS
setting to not a PnP OS. Then upon booting, the BIOS configures everything and it doesn't do it exactly like
Windows did it. Thus the actual configuration of the hardware and what Windows has in its registry are now
different.

 Plug-and-Play-HOWTO

Windows 2000 and XP 17

One way to try to get the Registry and the ESCD the same is to install (or reinstall) Windows when the BIOS
is set for "not a PnP OS". This should present Windows with hardware configured by the BIOS. If this
configuration is without conflicts, Windows will hopefully leave it alone and save it in it's Registry. Then the
ESCD and the registry are in sync.

Another method is to remove devices that are causing problems in Windows by clicking on "remove" in the
Device Manager. Then reboot with "Not a PnP OS" (set it in the BIOS's CMOS as you start to boot).
Windows will then reinstall the devices, hopefully using the bus-resource settings as configured by the BIOS.
Be warned that Windows will likely ask you to insert the Window installation CD since it sometimes can't
find the driver files (and the like) even though they are still there. A workaround for this is to select "skip file"
which will avoid installing the file from a CD. If the file is still on the HD, then the driver will hopefully find
it OK even though the Window's install program requested you install it from a CD (which you skipped
doing).

As a test I "removed" a NIC card which used a Novell compatible driver. Upon rebooting, Windows
reinstalled it with Microsoft Networking instead of Novell. This meant that the Novell Client needed to be
reinstalled --a lot of unnecessary work. So in a case like this it may be better to not fib to Windows95/98 but
instead to get Linux to configure bus-resources.

When using a Window-Linux PC (dual boot) you might notice a change in the way the BIOS configures due
to Windows9x (and other versions of Windows ??) modifying the ESCD. It supposedly does this only if you
"force" a configuration or install a legacy device. See Using Windows to set ESCD. Device drivers that do
configuring may modify what the BIOS has done as will the isapnp or PCI Utilities programs if you run them.

3.2 Assigning Resources by the BIOS

Modern BIOSs allow you to manually allocate resources, primarily IRQs. There is usually an option to set the
an allocation to "auto" so that the BIOS decides how to allocate the resource. "Auto" is often a good choice
unless you have old legacy non-pnp ISA cards.

If you have such non-PnP cards, then it may be important to reserve resources (such as IRQ's) for these in the
BIOS. Otherwise the BIOS may use these resources for some other device and create conflicts. An exception
is that for some common legacy devices (such as parallel and serial ports, disk drives), the BIOS may find
them (look at the screen at boot-time) so you don't need to reserve resources for them. If you've used
Windows on your PC, it might be true that Windows has already told the BIOS about them by running the
ICU utility (or the like) under Windows.

For PCI, the BIOS may let you assign IRQs to card slots 1, 2, 3, 4, etc. If you do this, you should know what
card is in what slot. Actually, each slot has 4 PCI IRQs: A, B, C, and D. If the BIOS menu doesn't say which
of these (A, B, C, D) is being assigned to an IRQ number, it's likely that it's only assigning the IRQ number to
PCI IRQ A. But many PCI cards only use IRQ A so it's then just like assigning an IRQ to a slot. See PCI
Interrupts

3.3 Reset the configuration?

This is a little risky to do. It will erase the BIOSs ESCD data-base of how your PnP devices should be
configured as well as the list of how legacy (non-PnP) devices are configured. Never do this unless you are
convinced that this data-base is wrong and needs to be remade. It was stated somewhere that you should do
this only if you can't get your computer to boot. If the BIOS loses the data on legacy ISA devices, then you'll
need to run ICA again under DOS/Windows to reestablish this data.

 Plug-and-Play-HOWTO

MS Windows 95, 98 (and Me ?) 18

4. How to Deal with PnP Cards

4.1 Introduction to Dealing with PnP Devices

Today almost all new internal boards (cards) are Plug-and-Play (PnP). Thus, the configuring of bus-resources
should, in almost all cases be entirely automatic. If a device is not working, see if it was detected, possibly by
rebooting. If the device driver can't resource-configure it, then hopefully one or more of methods 2-6 will:

Device Driver Configures1.
/sys User Interface Configures kernel 2.6 + (not for PCI yet, other severe limitations)2.
BIOS Configures (For the PCI bus you only need a PCI BIOS, otherwise you need a PnP BIOS)3.
ISA cards only: Disable PnP by jumpers or DOS/Windows software (but many cards can't do this)4.
ISA Bus: Isapnp is a program you can always use to configure ISA PnP devices5.
PCI Utilities is for configuring the PCI bus but the device driver should handle it6.
Windows Configures and then you boot Linux from within Windows/DOS. Use as a last resort7.

Any of the above will set the bus-resources in the hardware but only the first one (and possibly the second)
tells the driver what has been done. How the driver gets informed depends on the driver. You may need to do
something to inform it. See Tell the Driver the Configuration

4.2 Device Driver Configures, Reserving Resources

Device drivers (with the help of code provided by the kernel) can be written to use PnP methods to set the
bus-resources in the hardware but only for the device that they control. But many device drivers just accept
what the BIOS or Linux has configured and use code provided by the kernel to find out how this device has
been configured. Since the driver has checked the configuration and possibly reconfigured it, it obviously
knows the configuration and there is no need for you to tell it this info. This is obviously the easiest way to do
it since you don't have to do anything if the driver does it all.

If you have old pre-PnP ISA hardware, the Linux PnP software may not know about it and the bus-resources it
requires. So it might erroneously allocate the resources that this old hardware needs to some other device. The
result is a resource conflict but there's a way to try to avoid it. You can reserve the resources that the old ISA
card needs by configuring the BIOS at boot-time (usually), the isa-pnp module or to the kernel (if the PnP is
built into the kernel). For example, to reserve IRQ 5 give this argument to the isa-pnp module (or to the
kernel): isapnp_reserve_irq=5. See BootPrompt-HOWTO. Instead of ..._irq there are also _io, _dma, and
_mem.

For PCI devices, most drivers will configure PnP. Unfortunately, a driver could grab bus-resources that are
needed by other devices (but not yet allocated to them by the kernel). Thus a more sophisticated PnP Linux
kernel would be better, where the kernel did the allocation after all requests were in. See How Linux Does
PnP.

4.3 /sys User Interface Configures

Starting with kernel 2.6 there's supposedly a new way for the user to resource configure using the /sys
directory tree. But as of Aug. 2004, it can't be used for configuring in most cases. See The /sys Directory Tree.

 Plug-and-Play-HOWTO

3.3 Reset the configuration? 19

4.4 BIOS Configures

Intro to Using the BIOS to Configure PnP

If you have a PnP BIOS, it can configure the hardware. If the driver can't do it, the BIOS probably can. This
means that your BIOS reads the resource requirements of all devices and configures them (allocates
bus-resources to them). It is a substitute for a PnP OS except that the BIOS doesn't match up the drivers with
their devices nor tell the drivers how it has done the configuring. It should normally use the configuration it
has stored in its non-volatile memory (ESCD). If it finds a new device or if there's a conflict, the BIOS should
make the necessary changes to the configuration and may not use the same configuration as was in the ESCD.
In this case it should update the ESCD to reflect the new situation.

Your BIOS needs to support such configuring and there have been cases where it doesn't do it correctly or
completely. The BIOS may need to be told via the CMOS menu that it's not a PnP OS. While many device
drivers will be able to automatically detect what the BIOS has done, in some cases you may need to determine
it (not always easy). See What Is My Current Configuration? A possible advantage to letting the BIOS do it is
that it does its work before Linux starts so it all gets done early in the boot process.

Most BIOS made after about 1996 ?? can resource-configure both the PCI and ISA buses. But it's been
claimed that some older BIOSs can only do the PCI. And of course, for PCs with only the PCI bus, the BIOS
only needs to do PCI. To try to find out more about your BIOS, look on the Web. Please don't ask me as I
don't have data on this. The details of the BIOS that you would like to know about may be hard to find (or not
available). Some old BIOS's may have minimal PnP capabilities and seemingly expect the operating system to
do it right. If this happens you'll either have to find another method or try to set up the ESCD database if the
BIOS has one. See the next section.

The BIOS's ESCD Database

The BIOS maintains a non-volatile database containing a PnP-configuration that it will try to use (if you claim
that it's not a PnP OS). It's called the ESCD (Extended System Configuration Data). Again, the provision of
ESCD is optional but most PnP-BIOSs have it. The ESCD not only stores the resource-configuration of PnP
devices but also stores configuration information of non-PnP devices (and marks them as such) so as to avoid
conflicts. The ESCD data is usually saved on a chip and remains intact when the power is off, but sometimes
it's kept on a hard-drive??

The ESCD is intended to hold the last used configuration. But since Linux can change how devices are
configured (including the user using isapnp or pci utilities) then the ESCD will not know about this and will
not save this configuration in the ESCD. A good PnP OS might update the ESCD so you can use it later on for
a non-PnP OS (like standard Linux). MS Windows9x does this only in special cases. See Using Windows to
set ESCD. Starting with kernel 2.6, Linux is capable of modifying the ESCD but it's not used yet (as of Aug.
2004).

To use what's set in ESCD be sure you've set "Not a PnP OS" or the like in the BIOS's CMOS. Then each
time the BIOS starts up (before the Linux OS is loaded) it should configure things this way. If the BIOS
detects a new PnP card which is not in the ESCD, then it must allocate bus-resources to the card and update
the ESCD. It may even have to change the bus-resources assigned to existing PnP cards and modify the ESCD
accordingly.

There's a program that you may use to view the contents of the ESCD. It shows IRQs and IO addresses etc.,
but device names are missing (only EISA device-ID numbers). It's at: Index of /home/gunther.mayer/lsescd

 Plug-and-Play-HOWTO

 4.4 BIOS Configures 20

http://home.t-online.de/home/gunther.mayer/lsescd/

If each device saved its last configuration in its hardware, hardware configuring wouldn't be needed each time
you start your PC. But it doesn't work this way. So all the ESCD data needs to be kept correct if you use the
BIOS for PnP. There are some BIOSs that don't have an ESCD but do have some non-volatile memory to
store info regarding which bus-resources have been reserved for use by non-PnP cards. Many BIOSs have
both.

Using Windows to set the ESCD

Eventually the Linux kernel may set the ESCD. Starting with kernel 2.6, a function in the new code could do
it provided the kernel has been compiled with PNPBIOS. But it currently sits in the code unused.

If the BIOS doesn't set up the ESCD the way you want it (or the way it should be) then it would be nice to
have a Linux utility to set the ESCD. One may resort to attempting to use Windows for this (if you have it on
the same PC) to do this.

There are three ways to use Windows to try to set/modify the ESCD. One way is to use the ICU utility
designed for DOS or Windows 3.x. It should also work OK for Windows 9x/2k ?? Another way is to set up
devices manually ("forced") under Windows 9x/2k so that Windows will put this info into the ESCD when
Windows is shut down normally. The third way is only for legacy devices that are not plug-and-play. If
Windows knows about them and what bus-resources they use, then Windows should put this info into the
ESCD.

If PnP devices are configured automatically by Windows without the user "forcing" it to change settings, then
such settings probably will not make it into the ESCD. Of course Windows may well decide on its own to
configure the same as what is set in the ESCD so they could wind up being the same by coincidence.

Windows 9x are PnP operating systems and automatically PnP-configure devices. They maintain their own
PnP-database deep down in the Registry (stored in binary Windows files). There is also a lot of other
configuration stuff in the Registry besides PnP-bus-resources. There is both a current PnP resource
configuration in memory and another (perhaps about the same) stored on the hard disk. To look at this in
Windows98 or to force changes to it you use the Device Manager.

In Windows98 there are 2 ways to get to the Device Manager: 1. My Computer --> Control Panel --> System
Properties --> Device Manager. 2. (right-click) My Computer --> Properties --> Device Manager. Then in
Device Manager you select a device (sometimes a multi-step process if there are a few devices of the same
class). Then click on "Properties" and then on "Resources". To attempt to change the resource configuration
manually, uncheck "Use automatic settings" and then click on "Change Settings". Now try to change the
setting, but it may not let you change it. If it does let you, you have "forced" a change. A message should
inform you that it's being forced. If you want to keep the existing setting shown by Windows but make it
"forced" then you will have to force a change to something else and then force it back to its original setting.

To see what has been "forced" under Windows98 look at the "forced hardware" list: Start --> Programs -->
Accessories --> System Tools --> System Information --> Hardware Resources --> Forced Hardware. When
you "force" a change of bus-resources in Windows, it should put your change into the ESCD (provided you
exit Windows normally). From the "System Information" window you may also inspect how IRQs and IO
ports have been allocated under Windows.

Even if Windows shows no conflict of bus-resources, there may be a conflict under Linux. That's because
Windows may assign bus-resources differently than the ESCD does. In the rare case where all devices under
Windows are either legacy devices or have been "forced", then Windows and the ESCD configurations should

 Plug-and-Play-HOWTO

The BIOS's ESCD Database 21

be identical.

Adding a New Device (under Linux or Windows)

If you add a new PnP device and have the BIOS set to "not a PnP OS", then the BIOS should automatically
configure it and store the configuration in ESCD. If it's a non-PnP legacy device (or one made that way by
jumpers, etc.) then here are a few options to handle it:

You may be able to tell the BIOS directly (via the CMOS setup menus) that certain bus-resources it uses (such
as IRQs) are reserved and are not to be allocated by PnP. This does not put this info into the ESCD. But there
may be a BIOS menu selection as to whether or not to have these CMOS choices override what may be in the
ESCD in case of conflict. Another method is to run ICU under DOS/Windows. Still another is to install it
manually under Windows 9x/2k and then make sure its configuration is "forced" (see the previous section). If
it's "forced" Windows should update the ESCD when you shut down the PC.

4.5 ISA cards only: Disable PnP ?

PCI devices are inherently PnP so it can't be disabled. But a few ISA devices once had options for disabling
PnP by jumpers or by running a Windows program that comes with the device (jumperless configuration). If
the device driver can't configure it, this will avoid the possibly complicated task of doing PnP configuring.
Don't forget to tell the BIOS that these bus-resources are reserved. But since Linux support for PnP has
improved, you usually don't want to disable PnP. Here's some more arguments in favor of PnP:

If you have MS Windows on the same machine, then you may want to allow PnP to configure devices
differently under Windows from what it does under Linux.

1.

The range of selection for IRQ numbers (or port addresses) etc. may be too limited unless you use
PnP.

2.

You might have a Linux device driver that uses PnP methods to search for the device it controls.3.
If you need to change the configuration in the future, it may be easier to do this if it's PnP (no setting
of jumpers or running a Dos/Windows program).

4.

Once configured as non-PnP devices, they can't be configured by PnP software or a PnP-BIOS (until you
move jumpers and/or use the Dos/Windows configuration software again).

4.6 ISA Bus: Isapnp (part of isapnptools)

The isapnp standalone program is only for PnP devices on the ISA bus (non-PCI). It was much needed prior
to the 2.4 kernels. After the 2.4 kernel, which provided functionality to allow drivers deal with ISA PnP, the
isapnp standalone program is less significant. Also, the BIOS may configure ISA PnP satisfactory. But the
isa-pnp module (or the equivalent built into the kernel) is now very significant since various ISA device
drivers call on it to configure bus-resources. Prior to kernel 2.6 it resulted a /proc/isapnp "file" which may be
used to manually configure (see isapnp.txt in the kernel documentation).

In some cases Linux distributions have been set up to run isapnp automatically at startup. It's still done in
2004 but it isn't really needed if the device drivers work well. If you need to set it up yourself much of the
documentation for isapnp is difficult to understand unless you know the basics of PnP. This HOWTO should
help you understand it as well the FAQ that comes with isapnp. Running the Linux program "isapnp" at
boot-time will configure such devices to the resource values specified in /etc/isapnp.conf. Its possible to create
this configuration file automatically but you then should edit it manually to choose between various options.

 Plug-and-Play-HOWTO

Using Windows to set the ESCD 22

Then to let the driver know the resources, you often need to specify them as parameters to the appropriate
modules (drivers). This is done with configuration files, often in the /etc directory. Look there for files named
mod*, etc. If the driver is built into the kernel, then they may sometimes be given as a parameter to the kernel.
See BootPrompt-HOWTO.

With isapnp there once was a problem where a device driver which is built into the kernel may run too early
before isapnp has set the address, etc. in the hardware. This resulted in the device driver not being able to find
the device. The driver tries the right address but the address hasn't been set yet in the hardware. Is this still a
problem ??

If your Linux distribution automatically installed isapnptools, isapnp may already be running at startup. In this
case, all you need to do is to edit /etc/isapnp.conf per "man isapnp.conf". Note that this is like manually
configuring PnP since you make the decisions as to how to configure as you edit the configuration file.

If the configuration file is wrong or doesn't exist, you can use the program "pnpdump" to help create the
configuration file. It almost creates a configuration file for you but you must skillfully edit it a little before
using it. It contains some comments to help you edit it. While the BIOS may also configure the ISA devices
(if you've told it that you don't have a PnP OS), isapnp will redo it.

The terminology used in the /etc/isapnp.conf file may seem odd at first. For example for an IO address of
0x3e8 you might see "(IO 0 (BASE 0x3e8))" instead. The "IO 0" means this is the first (0th) IO address-range
that this device uses. Another way to express all this would be: "IO[0] = 0x3e8" but isapnp doesn't do it this
way. "IO 1" would mean that this is the second IO address range used by this device, etc. "INT 0" has a
similar meaning but for IRQs (interrupts). A single card may contain several physical devices but the above
explanation was for just one of these devices.

4.7 PCI Utilities

The package PCI Utilities (= pciutils, sometimes called "pcitools"), allows one to manually PnP-configure the
PCI bus (with difficulty). "lspci" or "scanpci" lists bus-resources while "setpci" sets resource allocations
(except IRQs) in the hardware devices. It appears that setpci is mainly intended for use in scripts and one
needs to understand the details of the PCI configuration registers in order to use it. That's a topic not explained
here nor in the manual page for setpci.

People have used this to configure PCI devices where the driver failed to do it. An example is found in my
Modem-HOWTO and Serial-HOWTO in the subsection "PCI: Enabling a disabled port". However, enabling a
device is of no use unless you have a working driver for the device.

4.8 Windows Configures

This method uses MS Windows to configure and should be used only if all else fails. If you have Windows9x
(or 2k) on the same PC, then just start Windows and let it configure PnP. Then start Linux from Windows (or
DOS) using, for example, loadlin.exe. But there may be a problem with IRQs for PCI devices. As Windows
shuts down (without any messages) to make way for Linux, it may erase (zero) the IRQ which is stored in one
of the PCI device's configuration registers. Linux will complain that it has found an IRQ of zero.

The above is reported to happen if you start Linux using a shortcut (PIF file). But a workaround is reported
where you still use the shortcut PIF. A shortcut is something like a symbolic link in Linux but it's more than
that since it may be "configured". To start Linux from DOS you create a batch file (script) which starts Linux.
(The program that starts Linux is in the package called "loadlin"). Then create a PIF shortcut to that batch file

 Plug-and-Play-HOWTO

4.6 ISA Bus: Isapnp (part of isapnptools) 23

and get to the "Properties" dialog box for the shortcut. Select "Advanced" and then check "MS-DOS mode" to
get it to start in genuine MS-DOS.

Now here's the trick to prevent zeroing the PCI IRQs. Click "Specify a new MS-DOS configuration". Then
either accept the default configuration presented to you or click on "Configuration" to change it. Now when
you start Linux by clicking on the shortcut, new configuration files (Config.sys and Autoexec.bat) will be
created per your new configuration.

The old files are stored as "Config.wos and Autoexec.wos". After you are done using Linux and shut down
your PC then you'll need these files again so that you can run DOS the next time you start your PC. You need
to ensure that the names get restored to *.sys and *.bat. When you leave Windows/DOS to enter Linux,
Windows is expecting that when you are done using Linux you will return to Windows so that Windows can
automatically restore these files to their original names. But this doesn't happen since when you exit Linux
you shut down your PC and don't get back to Windows. So how do you get these files renamed? It's easy, just
put commands into your "start-Linux" batch file to rename these files to their *.bat and *.sys names. Put these
renaming commands into your batch file just before the line that loads Linux.

Also it's reported that you should click on the "General" tab (of the "Properties" dialog of your shortcut) and
check "Read-only". Otherwise Windows may reset the "Advanced Settings" to "Use current MS-DOS
configuration" and PCI IRQs get zeroed. Thus Windows erases the IRQs when you use the current MS-DOS
configuration but doesn't erase when you use a new configuration (which may actually configure things
identical to the old configuration). Windows does not seem to be very consistent.

4.9 PnP Software/Documents

Isapnptools homepage•
Proposal for a Configuration Manager for Linux 1999 (Never got into kernel but Linux is slowly
"evolving" in this direction).

•

PnP Specs. from Microsoft•
Book: PCI System Architecture, 4th ed. by Tom Shanley +, MindShare 1999. Covers PnP-like
features on the PCI bus.

•

Book: Plug and Play System Architecture, by Tom Shanley, Mind Share 1999. Details of PnP on the
ISA bus. Only a terse overview of PnP on the PCI bus.

•

Book: Programming Plug and Play, by James Kelsey, Sams 1995. Details of programming to
communicate with a PnP BIOS. Covers ISA, PCI, and PCMCIA buses.

•

5. Tell the Driver the Configuration ??

5.1 Introduction

A modern driver for a device will find out the bus-resource configuration without you having to tell it
anything. It may even set the bus-resources in the hardware using PnP methods. Some drivers have more than
one way to find out how their physical device is configured. In the worst case you must hard-code the
bus-resources into the kernel (or a module) and recompile.

In the middle are cases such as where you run a program to give the bus-resource info to the driver or put the
info in a configuration file. In some cases the driver may probe for the device at addresses where it suspects
the device resides (but it will never find a PnP device if it hasn't been enabled by PnP methods). It may then
try to test various IRQs to see which one works. It may or may not automatically do this.

 Plug-and-Play-HOWTO

4.8 Windows Configures 24

http://www.roestock.demon.co.uk/isapnptools/
http://www.astarte.free-online.co.uk
http://www.microsoft.com/hwdev/tech/pnp/default.asp

In the modern case the driver should use PnP methods to find the device and how the bus-resources have been
set by the BIOS, etc. but will not actually set them. It may also look at some of the "files" in the /proc
directory.

One may need to "manually" tell a driver what bus-resources it should use. You give such bus-resources as a
parameter to the kernel or to a loadable module. If the driver is built into the kernel, you pass the parameters
to the kernel via the "boot-prompt". See The Boot-Prompt-HOWTO which describes some of the bus-resource
and other parameters. Once you know what parameters to give to the kernel, one may put them into a boot
loader configuration file. For example, put append="...". into the lilo.conf file and then use the lilo command
to get this info into the lilo kernel loader.

If the driver is loaded as a module, in many cases the module will find the bus-resources needed and then set
them in the device. In other cases (mostly for older PCs) you may need to give bus-resources as parameters to
the module. Parameters to a module (including ones that automatically load) may be specified in
/etc/modules.conf. There are usually tools used to modify this file which are distribution-dependent.
Comments in this file should help regarding how to modify it. Also, any module your put in /etc/modules will
get loaded along with its parameters.

While there is much non-uniformity about how drivers find out about bus-resources, the end goal is the same.
If you're having problems with a driver you may need to look at the driver documentation (check the kernel
documentation tree). Some brief examples of a few drivers is presented in the following sections:

5.2 Serial Port Driver Example

For PCI serial ports (and for ISA PnP serial ports after 2.4 kernels) the serial driver detects the type of serial
port and PnP configures it. Unfortunately, there may be some PCI serial ports that are not supported yet.

For the standard ISA serial port with very old older versions of the kernel and serial driver (not for multiport
cards) the driver probes two standard addresses for serial ports. It doesn't probe for IRQs but it just assigns the
"standard" IRQ to the first two serial ports. This could be wrong.

For anything else the configuration file for the setserial program must be manually modified. See
Serial-HOWTO for more details. You use setserial to inform the driver of the IO address and Setserial is often
run from a start-up file. In newer versions there is a /etc/serial.conf file (or /var/lib/setserial/autoconfig that
you "edit" by simply using the setserial command in the normal way and what you set using setserial is
saved in the serial.conf configuration file. The serial.conf file should be consulted when the
setserial command runs from a start-up file. Your distribution may or may not set this up for you.

There are two different ways to use setserial depending on the options you give it. One use is used to
manually tell the driver the configuration. The other use is to probe at a given address and report if a serial
port exists there. It can also probe this address and try to detect what IRQ is used for this port.

Even with modern kernels, setserial is sometimes needed if the driver fails to detect the serial port, or if you
have very old hardware.

6. How Do I Find Devices and How Are They Configured?

 Plug-and-Play-HOWTO

5.1 Introduction 25

6.1 Finding and How-Configured Are Related

Once you find your hardware, the same program that found it usually tells you how it's configured. So finding
out how it's configured is usually the same procedure as finding the hardware.

6.2 Devices May Have Two "Configurations"

Here "configuration" means the assignment of PnP bus-resources (addresses, IRQs, and DMAs). For each
device, there are two parts to the configuration question:

What does the driver think the hardware configuration is?1.
What configuration (if any) is actually set in the device hardware?2.

Each part should have the same answer (the same configuration). The configuration of the device hardware
and its driver should obviously be the same (and usually is). But if things are not working right, it could be
because there's a difference. This means that the driver has incorrect information about the actual
configuration of the hardware. This spells trouble. If the software you use doesn't adequately tell you what's
wrong (or automatically configure it correctly) then you need to investigate how your hardware devices and
their drivers are configured. While Linux device drivers should "tell all", in some cases it may not be easy to
determine what has been set in the hardware.

Another problem is that when you view configuration messages on the screen you need to know whether the
reported configuration is that of the device driver, the device hardware, or both. If the device driver has either
set the configuration in the hardware or has otherwise checked the hardware then the driver should have the
correct information.

But sometimes the driver has been provided incorrect resources by a script, configuration file, by incorrect
resource parameters given to a module, or perhaps just hasn't been told what the resources are and tries to use
incorrect default resources. For example, one can uses "setserial" to tell the serial port driver an incorrect
resource configuration and the driver accepts it without question. But the serial port doesn't work right (if at
all).

6.3 Finding Hardware

A common problem is that the software doesn't detect your device and/or determine the right driver for it. For
PnP devices, detecting them is easy via PnP software except for the unusual case where the hardware has been
disabled. The BIOS can sometimes be set to disable PnP devices or a jumper/switch on the physical device
itself could disable it. In such a cases, the hardware can't be detected at all until you either reconfigure the
BIOS or change a jumper/switch.

Since the PCI bus is inherently PnP, there are no hidden devices. Even though PnP devices are easy to find by
PnP methods, if the driver doesn't use PnP methods but uses the old method of probing for them at likely
address, they may not be found. This is because that, until the resources are set in a PnP device (by the BIOS
or Linux), the device may have no address at all, so probing at likely address yields nothing. For the old ISA
bus, some of the devices may be non-PnP and thus the old probing methods may find them. So many drivers
still probe at likely address, in addition to using PnP methods (= PnP probing which is sometimes also just
called "probing").

Ways to Find Hardware Devices (and their configurations): (follow link to more details)

 Plug-and-Play-HOWTO

6.1 Finding and How-Configured Are Related 26

Check the BIOS to make sure they are not disabled•
Watch the Boot-time Messages on the screen•
Look in The /proc Directory Tree•
Tools for Detecting and/or Configuring all Hardware lsdev, hwinfo, discover, kudzu•
Tools for Detecting and/or Configuring One Type of Hardware•
PCI: PCI Bus Inspection•
ISA Bus: ISA Bus Introduction•
ISA Bus: PnP cards•
ISA Bus: For Non-PnP Cards•
ISA Bus: For Cards with jumpers•
ISA Bus: If Neither PnP nor jumpers•
Use MS Windows•

6.4 Boot-time Messages

Significant info on the configuration may be obtained by reading the messages from the BIOS and from Linux
that appear on the screen when you first start the computer. These messages often flash by too fast to read but
once they stop type Shift-PageUp a few times to scroll back to them. To scroll forward thru them type
Shift-PageDown. Typing "dmesg" at any time to the shell prompt will show only the Linux kernel messages
and may miss some of the most important ones (including ones from the BIOS). The messages from Linux
may sometimes only show what the device driver thinks the configuration is, perhaps as told it via an
incorrect configuration file. Checking log files in /var/log may also be useful.

For the PCI bus, the notation: 00:1a:0 means the PCI bus 00 (the main PCI bus), PCI card (or chip) 1a, and
function 0 (the first device) on the card or chip. The 2nd device on the card (or chip) 08 would be: 00:08:1.

The BIOS messages display first and will show the actual hardware configuration at that time, but isapnp, or
pci utilities, or device drivers may change it later. In some cases it doesn't show devices that the BIOS didn't
configure.

If the BIOS messages don't show as you back up to the start of the BIOS messages using Shift-PageUp, try
freezing them as they flash by, by hitting the "Pause" key as soon as the first words flash on the screen. Press
any key to resume. It's often tricky to hit Pause exactly at the right time. Be sure to hold down the "Shift" key
before hitting "Pause" since "Pause" is a shifted key. If you miss, hit Ctrl-Alt-Del when Linux starts booting
to reboot and try again. Once the messages from Linux start to appear, it's too late to use "Pause" since it will
not freeze the messages from Linux.

To set things in the BIOS such as IRQs reserved for legacy hardware, serial port addresses, etc. you need to
get into the BIOS (CMOS) setup menus at boot time. Each BIOS brand has different keys you need to hold
down to do this. There are lists on the Internet. Sometimes by freezing the BIOS messages or watching the
screen, the key you need to press will be indicated in a message such as "Press DEL for setup". But it may
flash by so fast that you miss it. Of course, you don't set stuff in the BIOS that you don't understand, or your
PC may become disabled.

Messages from the BIOS at boot-time tell you how the hardware configuration was then. The current
configuration may still be the same since Linux should hopefully accept what the BIOS has done if it's OK.
Messages from Linux may be from drivers that used kernel PnP functions to inspect and/or set bus-resources.
These should be correct, but beware of messages that only show what the driver was told from a configuration
file. It could be wrong. Of course, if the device works fine, then it's likely configured the same as the driver.

 Plug-and-Play-HOWTO

6.3 Finding Hardware 27

6.5 The /proc Tree

Starting with Kernel 2.6, in addition to the /proc directory tree, there's also a /sys tree See The /sys Tree.
These trees are useful for finding resource configurations and devices. The "files" in them represent data in
the kernel memory and don't exist at all on you harddrive. Programs such as lspci get their info from the /proc
tree so such programs should display the results in more readable form than directly inspecting the "files" in
/proc. Here are 4 /proc "files" that show resources which have been registered in the kernel by device drivers.

Since Linux's plug-and-play works by letting device drivers allocate resources for their device, there may be
no listing of resources used by some of your hardware if the driver hasn't yet requested that such resources be
reserved. For the case of kernel modules (loadable device drivers), if the module hasn't loaded yet, the kernel
doesn't know about any resources it needs. Sometimes, the module only loads when you start an application
that needs it. So if certain hardware is missing from these "files" in /proc, it may mean that the hardware hasn't
yet been used. For example, even though your floppy drive has a floppy disk in it and is ready to use, the
interrupt for it will not show up unless its in use.

/pts shows I/O addresses. If there's a mistake (wrong address) it means trouble since the device will not get
bytes sent to it.
/proc/iomem shows registered IO memory addresses.
/proc/interrupts shows the interrupts currently in use.
/proc/dma shows the dma (Direct Memory Access) ISA dma channel allocations.

In the past, the author observed the listing of interrupts that didn't exist. In some cases it showed that a few
such interrupts were actually sent. This could be due to the issuing of erroneous interrupts due to hardware
defects.

/proc/bus/ has subdirectories (subfolders) input/, pci/, and isapnp/. The format of most of the files in this
directory is very cryptic, often just a copy of the bytes in the configuration space. So, use them only as a last
resort. The input/ subdirectory has information on input devices such as the keyboard and mouse. It's not as
cryptic as the other directories under /proc/bus/ and might yield some useful information about input devices
that are PS2 or on the LPC bus (See LPC Bus). Unfortunately, what I've seen doesn't say that it's on the LPC
bus when it likely is. In /pci/00/ there is one binary file for each pci device where the file names are the
pci-slot-numbers (also called pci-slot-names). The 00 means pci bus 0.

6.6 The /sys Tree

Starting with kernel 2.6 there's a new /sys directory for PnP configuration. It's a sysfs type of file system and
it's something like the /proc filesystem since the "files" represent information in the kernel memory and are
not on your harddrive. But it's not as useful as the /proc filesystem. Originally (in the 2.5 kernels) it was called
"driver file system" of type "driverfs".

In the sysfs, each device which exists on your system has it's own directory which contains files showing the
resources allocated to it. Such device directories have names like 0000:00:12.0@ or 00:06@. What devices
are these? The first is a PCI card in "slot" 12 of your PC. The slot may actually be labeled PCI2 inside your
PC (2 instead of 12). That's because low numbered "slots" are used for built-in devices on the motherboard
that don't use any physical slots. In this example, "slots" 1-10 would be built-in and actual slots 11-14 are
labeled 1-4. By typing "lspci" you'll be able to match the numbers (like 0000:00:12.0) to names (like IDE
interface). Type "lspci -v" or "lspci -vv" to see more.

 Plug-and-Play-HOWTO

 6.5 The /proc Tree 28

Well then, what is 00:06 ? It's an ISA card (or built-in device) but it's not ISA slot 6 (like the PCI numbering).
When a search was made for ISA-PNP devices, it was the 6th one found. More precisely, it was the 7th one
found since there's a device numbered: 00:00. So how does one identify them? Well, you could type: "cat */*"
and display all the files for all the devices, but even then you don't see the device names (but do see info from
which you can identify them). This inconvenience will hopefully be fixed in the future.

Not only do these files supply information on the bus-resource configuration (in somewhat cryptic format)
and drivers (in "driver" directories), but in the future, you should be able to use them to change the resource
configuration. Right now (Aug 2004) you can't configure the PCI bus with it. A serious limitation is that per
the present "driver model" you can't change the resource of a device that has been assigned to a driver which
likely means that you'll need to unload the driver module in order to use it. If the driver is built in, there's no
hope. These serious limitations will hopefully be eliminated in the future. In the kernel documentation is a
file: "pnp.txt" telling how to configure. As of Aug. 2004, it was much out-of-date but the author is working on
an update. Using the /sys tree to configure resources is known as the "Linux Plug and Play User Interface".

The other part of "Linux Plug and Play" is the kernel interface used by device drivers. This has changed a lot
starting with kernel 2.6 but most drivers are still using the old interface (as of Aug. 2004). It's possible also for
drivers (or you) to use the "user interface" which needs improvement.

6.7 PCI Bus Inspection

It's easy to find out what bus-resources have been assigned to devices on the PCI bus with the "lspci" and/or
"scanpci" commands The options -v or -vv will show more detail. In some cases, "scanpci" will find a device
that "lspci" can't find. That's because "scanpci" directly searches for devices on the pci bus (via the
configuration space) and doesn't use data obtained by the kernel (where it could be wrong due to a kernel bug
--I've just found such a case).

This info in more cryptic format is found in "files" located in the /sys and /proc trees. In
/sys/bus/pci/devices the file vendor will contain the vendor id number such as 0x4B8C, etc. In still
more cryptic format it's in /proc/bus/pci. Such information in older kernels prior to kernel 2.6, was in
/proc/pci (non-cryptic but IRQs in hexadecimal) or in /proc/buspci/devices (cryptic display).

In most cases for PCI you will only see how the hardware is now configured and not what resources are
required. In some cases you only see the base addresses (the starting addresses of the range) but not the ending
addresses. If you see the entire range then you can determine how many bytes of address resources are
needed.

6.8 ISA Bus Introduction

For cards on the ISA bus, it's not as simple as for the PCI bus which is inherently PnP. Later ISA cards were
PnP but older ones were not. Also, some cards that are PnP had their PnP disabled by special software which
runs only on MS. The non PnP cards are configured by jumpers on the card or by MS software.

6.9 ISA PnP cards

If it's a PnP card you may try running pnpdump --dumpregs but it's not a sure thing. The results may be
seem cryptic but they can be deciphered. Don't confuse the read-port address which pnpdump uses for
communication with PnP cards with the I/O address of the found device. They are not the same.

 Plug-and-Play-HOWTO

6.6 The /sys Tree 29

6.10 LPC Bus

LPC (Low Pin Count) is a bus-like interface often used on laptops and increasingly used on desktops too. To
find out if you have LPC type "lspci" and look for "LPC". There are other words next to "LPC" such as "ISA
Bridge ... LPC Interface Controller" or "LPC Bridge", etc. LPC is not really ISA but it substitutes for an ISA
bus.

The old ISA bus was slow and devices that needed more speed were put on the newer PCI but. But devices
that didn't need high speed were often implemented by chips on the motherboard and remained on the ISA bus
even though there were no slots for any ISA cards. Then the LPC bus came along to replace what remained of
the ISA bus. LPC is much smaller than ISA and just as fast since it runs at 4 times the clock speed of ISA. Its
multiplexed bus for data/address and control is only 4 bits wide. To send a byte requires splitting the byte into
2 half-bytes and then putting them back together. So its clear why it's "Low Pin Count" = LPC. There's also a
few other lines in the bus.

This small LPC interface is used for slow "legacy" devices such as serial ports, parallel ports, and floppy
drives. So a computer using LPC will have all fast devices on the PCI bus, etc. and slow (legacy) devices on
the LPC bus interface. All LPC devices will be on-board; there are no LPC slots.

LPC has no standards for Plug-and-Play configuring but says that the BIOS or ACPI should do the
configuring. Devices on this bus sometimes use isapnp. Linux support for LPC as of late 2004 was very much
incomplete but Linux has some support for the configuring aspects of ACPI. Sometimes a BIOS menu lets
one manually PnP-configure devices on the LPC bus but it may not tell you that the device resides on LPC.

A major chip on the LPC bus is the superio chip which contains legacy IO devices: serial and parallel ports,
floppy controller, keyboard controller, mice, etc. BIOS data may also reside on the LPC bus. The keyboard
and mouse (input devices) should be listed in /proc/bus/input/devices but instead of seeing "lpc" it seems to
show "isa0060/serio0, etc. even though it's on the lpc bus and not the isa bus.

6.11 X-bus

Before the LPC bus became popular, there was an "X-bus" (not covered in this HOWTO) which served the
same purpose as the LPC bus but wasn't so compact as LPC. Some PCs have both LPC and an X-bus.

6.12 Non-PnP Cards

In contrast to PnP cards, non-PnP cards always have their resources set in the hardware. That is they always
have an address and IRQ unless there is a jumper setting, etc. for disabling the device. Sometimes the
resources used can be found by probing done by the device driver or by other software that does probing. For
example "scanport" (Debian only ??) probes most IO port address and may find ISA devices. But be warned
that it might hang your PC. Sometimes it will fail to find hardware that's actually there (since the hardware
has the default 0xff in it's registers). Even if It finds the hardware it will not show the IRQ nor will it
positively identify the hardware.

So one way to try to find such hardware is to start a driver, which may probe for such hardware. By looking at
the boot-time messages, you might see a driver start and find the hardware. Otherwise, you may need to find a
driver and start it (for example, by having it load as a module).

 Plug-and-Play-HOWTO

 6.10 LPC Bus 30

Finding the right driver may be difficult. Sometimes there just isn't any driver since some devices aren't (yet ?)
supported by Linux. To determine which driver you need, look at any documentation which might identify the
card. If this fails, look on the card itself, including important names/numbers on the chips. But the
identification of the driver module you need may not be anywhere on the card. You could find the FCC id on
the card and then search the Internet with the FCC id number to try to find more information about the card
(or the chips on it).

6.13 Non-PnP Cards with jumpers

If the card has jumpers to set the resources (configuration) then one may look at how the jumpers are set.
There are some cards that had both PnP and jumpers. They worked like jumper cards if PnP was somehow
disabled. Sometimes a card has labels on it showing how to set the jumpers (or at least gives some clue). You
may need the documentation that came with the card (either printed or on a floppy disk). Perhaps you can find
it on the Internet.

6.14 Neither PnP nor jumpers

One the most difficult cases is where software running under MS has been used to configure either a non-PnP
card or a PnP card where PnP has been disabled by the same MS software. So you can't configure it by PnP
nor by jumpers. In this case your only hope is to probe for addresses as described in Non-PnP Cards. Or try to
find the MS software that configured it.

6.15 Tools for Detecting and/or Configuring all Hardware

In a duplication of effort, various major distributions of Linux developed their own tools for detection and/or
configuration of hardware. This configuring is usually a lot more than just the resource type configuring of
Plug-and-Play. It's configuring in general which is mostly beyond the scope of this howto.

Then other distributions, such as Debian, might obtain copies of the tool and offer it to their users as an
option, or as a troubleshooting tool. These tools likely make use of the standard Linux tools for detecting
hardware such as "lspci". In the following list of tools, the name of the distribution that developed it is in
parentheses, but the tool is likely available also in other distributions.

hardinfo•
hwinfo (SuSE) detects move stuff than discover•
discover (Progeny, used by Debian)•
Kudzu (RedHat) detects and configures•
lsdev (standard Linux command)•
hwsetup-knoppix (Knoppix, based on Kudzu)•

6.16 Tools for Detecting and Configuring One Type of
Hardware

There are various tools available to find and possibly configure various type of devices. This configuring is
configuring in general which is not covered by this howto.

read-edid (get-edid): gets parameters of VESA monitors (except very old ones)•
sndconfig: for soundcards•

 Plug-and-Play-HOWTO

6.12 Non-PnP Cards 31

printtool: printers, must have X-window running•
pconf-detect: parallel ports•
gpm-mouse-test:detects and tests mice•
mdetect: detects and configures mice Does it know about the mice devices in /dev/input/?•

• nictools-pci (and nictools-nopci) for ethernet cards•
hdparm: configure hard drive hardware•
hotplug: used by kernel•
xvidtune: tune video for use with Xwindows (See XFree86-Video-Timings-HOWTO)•

6.17 Use MS Windows

Some people have attempted to use Windows to see how bus-resources have been set up. Unfortunately, since
PnP hardware forgets its bus-resource configuration when powered down, the configuration may not be the
same under Linux. For non PnP hardware (or where someone has disabled PnP inside the device by jumpers
or Windows software), then using Windows should work OK. Even for PnP, it often turns out to be the same
because in many cases both Windows and Linux simply accept what the BIOS has set. But where Windows
and/or Linux do the configuring, they may do it differently. So don't count on PnP devices being configured
the same.

7. PCI Interrupts

7.1 Introduction

Each PCI device that needs an interrupt comes with a fixed PCI interrupt that can't be changed. It's designated
by a slot number and a letter A, B, C, or D. Example 3:B. But this PCI interrupt is mapped (routed or
redirected) to an interrupt number like say 21 by a chip on the motherboard.

This routing is done by a "programmable interrupt router" = PIR. Alternatively, an interrupt line may just
routed directly (without any PIR). If there's a PIR (router) it can be programmed by the BIOS or by Linux.
Thus a PCI device's interrupt may be sometimes be changed, not by sending the interrupt on a different wire
but by changing the routing of the pulse on that wire by programming the PIR. When the routing changes, the
interrupt provide by this new routing is written in a configuration register located in the device chip.

7.2 History: From ISA to PCI Interrupts

Before the PCI bus, PCs used the ISA bus and then during the transition to the newer PCI bus, most PC
computers used both the PCI and ISA busses. The ISA bus had all interrupt lines going to every card so any
card could change its irq number just by sending out its interrupt signal on a different line (on a different pin).
All the interrupt signals were sent to the in interrupt controller which then signalled the CPU to temporarily
stop whatever it was doing and run driver code to service the interrupt.

When PCI first appeared, the simple solution was just to map the PCI interrupts to available ISA interrupts
that weren't being used. This required the use of "programmable interrupt router" = PIR (hardware) to do this
mapping. But since there were only 15 such interrupts, it was common to put many PCI devices on just the
few available interrupts. To solve this problem is simple: provide new hardware to increase the number of
interrupts. The result was the APIC. But it was slow to be adopted since the ability of the PCI bus to share
interrupts eased the interrupt shortage problem. So APIC was mostly used where it was needed for dual
processors.

 Plug-and-Play-HOWTO

6.16 Tools for Detecting and Configuring One Type ofHardware 32

7.3 Advanced Programmable Interrupt Controller (APIC)

This can provide (depending on the model) 16, 24, 32, or 64 interrupts, etc. It also can handle the routing of
interrupts from one CPU to another for cases of multiple CPUs. See the file "IO-APIC" in the i386 directory
of the kernel documentation and the ACPI-HOWTO. Don't confuse APIC with ACPI (Advanced
Configuration and Power Interface) which may be used by the kernel to configure the APIC.

The actual APIC controller that is connected to the interrupt lines is an I/O APIC (or IO-APIC or IOAPIC).
By using more than one IO-APIC one may obtain more interrupts and they are numbered so as to be unique.
For example, the first controller could have input pins 0-23 and the second would call its input pins 24-47,
resulting in 48 interrupts numbered 0-47. But a few people find they have high interrupt numbers. Could it be
that the second IO-APIC is starting with a higher base number than it should, leaving a long gap of
non-existent irqs?

Besides IO-APICs there are local APICs (LAPIC) which are part of each CPU. The IO-APIC does it work by
communicating with the LAPICs inside the CPUs.

When APIC was introduced, the old ISA PICs were also retained giving one a choice of whether or not to use
APIC or ISA's PIC (which is sometimes just called PIC or XT-PIC in /proc/interrupts; the "XT" comes from
IBM's XT PC which was IBM's second model PC in 1983). It's possible to tell the kernel (on the kernel
command line) to not use APIC in which case it will use the old XT-PIC if its available. But since APIC can
have more interrupts than the 15 provided by XT-PIC, there could be problems ??

To see if you have PIC or APIC look at /proc/interrupts. If you see XT-PIC for just irq 2 but IO-APIC for the
others, it may mean that you have the old XT-PIC but it isn't being currently used. Well, irq 2 is available for
communication between two old XT-PICs just in case you might need to use them if you were to disable
APIC. There are two XT-PICs since each only supports 8 interrupts.

7.4 Message Signalled Interrupts (MSI)

Another development is Message Signalled Interrupts (MSI) where the interrupt is just a message sent to a
special address over the main computer bus (no interrupt lines needed). But the device that sends such a
message must first gain control of the main bus so that it can send the interrupt message. Such a message
contains more info than just "I'm sending an interrupt". It contains an index for the address of program that
needs to be run to service the IRQ. That index, such as 3, would mean the the cpu find the address it must
jump to in the 3rd element of a special table that the cpu knows about.

Since cards must support MSI and many cards don't, it seems that the conventional methods of interrupt
hardware support (called INTx) will be around for a long time.

7.5 Sharing PCI Interrupts

PCI interrupts may be shared, meaning that two or more PCI devices will generate the same IRQ. If feasible,
it's usually better not to share. Sharing doesn't work right for: 1. very old PCI hardware (before 1995 ??) 2.
defective PCI hardware which may have a factory defect (it was made that way). For example, if a PCI device
on IRQ9 falsely claims that any IRQ9 was intended for it, then other devices using IRQ9 may wind up having
all IRQs they issue ignored since the bad device is falsely claiming their IRQs. With no sharing, this problem
is avoided.

 Plug-and-Play-HOWTO

7.3 Advanced Programmable Interrupt Controller (APIC) 33

For an example of sharing the same IRQ between two PCI devices. see PCI interrupt sharing This sharing
ability is built into the hardware and all device drivers are supposed to support it. Note that you usually can't
share the same interrupt between the PCI and ISA bus.

7.6 Looking at Routing Tables

Some info is provided by the boot-time messages which may be viewed by typing dmesg. The following ways
of looking at tables involve software which you may not have (or doesn't exist yet). To check routing where
PCI routes to the 16 ISA interrupts use pirtool which shows the $PIR routing table. If you have APIC with
hard-wired routing (no PIR), use mptable to look at the MP table. For routeable APIC, a table is accessed by
ACPI _PRT methods (but is there a command-line command to do this?)

7.7 For More Information

Detailed technical information about interrupts is at PCI Interrupts for x86 Machines under FreeBSD.
Microsoft has The Importance of Implementing APIC-Based Interrupt Subsystems on Uniprocessor PCs

7.8 PCI Interrupt Linking

Here are some of the details of the PCI interrupt system. Each PCI card (and device mounted on the
motherboard) has 4 possible interrupts: INTA#, INTB#, INTC#, INTD#. From now on we will call them just
A, B, C, and D. Each has its own pin on the edge connector of a PCI card. Thus for a 7-slot system (for 7
cards) there could be 7 x 4 = 28 different interrupt lines for these cards. Devices built into the motherboard
also have additional interrupts. But the specs permit a fewer number of interrupt lines, so some PCI buses
seem to be made with only 4 or 8 interrupt lines. This is not too restrictive since interrupts may be shared. For
4 interrupt line (wires, traces, or links) LNKA, LNKB, LNKC, LNKD there is a programmable "interrupt
router" chip that routes LNKA, LNKB, LNKC, LNKD to selected IRQs. This routing can be changed by the
BIOS or Linux. For example, LNKA may be routed to IRQ5. Suppose we designate the B interrupt from slot
3 as interrupt 3B. Then interrupts 3B and 2A could both be permanently connected to LNKA which is routed
to IRQ5. These 2 interrupts: 3B and 2A are permanently shared by hardwiring on the motherboard.

One may type "dmesg" on the command line to see how interrupt lines like LNKA are routed (or linked) to
IRQs (*5 means that it's linked to IRQ 5). Look for "PCI Interrupt Link". Note that "link" is used here with
two meanings: 1. the linking (routing) of PCI interrupt lines to IRQs. 2. the label of an interrupt line such as
LNKB (link B). The interrupt line labels seem to be provided by the Bios ?? and they may have many
different names like: LNKC, LNK2, APCF, LUBA, LIDE, etc. Question: When a large number of interrupt
lines are shown disabled, do they all physically exist on the motherboard? Or do they just exist only in the
ACPI BIOS software so that the BIOS can work with motherboards which have more interrupt lines?

One simple method of connecting (hard-wiring) these lines from PCI devices (such as 3B) to the interrupts
LNKA, etc. would be to connect all A interrupts (INTA#) to line LNKA, all B's to LNKB, etc. This method
was once used many years ago but it is not a good solution. Here's why. If a card only needs one interrupt, it's
required that it use A. If it needs two interrupts, it must use both A and B, etc. Thus INTA# is used much
more often than INTD#. So one winds up with an excessive number of interrupts sharing the first line (LNKA
connected to all the INTA#). To overcome this problem one may connect them in a more random way so that
each of the 4 interrupt lines (LNKA, LNKB, LNKC, LNKD) will share about the same number of actual PCI
interrupts.

 Plug-and-Play-HOWTO

7.5 Sharing PCI Interrupts 34

http://people.freebsd.org/~jhb/papers/bsdcan/2007/article/article.html
http://www.microsoft.com/whdc/system/sysperf/apic.mspx

One method of doing this would be to have wire LNKA share interrupts 1A, 2B, 3C, 4D, 5A, 6B, 7C. This is
done by physically connecting wire W to wires 1A, 2B, etc. Likewise wire LNKB could be connected to wires
1B, 2C, 3D, 4A, 5B, 6C, 7D, etc. Then on startup, the BIOS maps the LNKB, LNKA, LNKC, LNKD to IRQs.
After that, it writes the IRQ that each device uses into a hardware configuration register in each device. From
then on, any program interrogating this register can find out what IRQ the device uses. Note that just writing
the IRQ in a register on a PCI card doesn't in any way set the IRQ for that device.

A practical use for this info is that, as a last resort, one may change the IRQs of a PCI card by inserting it in a
different slot. In the above example, INTA# of a PCI card will be connected to wire LNKA if the card is
inserted into slot 1 (1A maps to LNKA) but INTA# will be connected to wire LNKB when it's inserted into
slot 4 (4A maps to LNKB).

A card in a slot may have up to 8 devices on it but there are only 4 PCI interrupts for it (A, B, C, D). This is
OK since interrupts may be shared so that each of the 8 devices (if they exist) can have an shared interrupt.
The PCI interrupt letter of a device is often fixed and hardwired into the device. The assignment of interrupts
is done by either the BIOS or Linux mapping the PCI interrupts to the ISA-like interrupts as mentioned above.

If there are only 4 lines (LNKA, LNKB, LNKC, and LNKD) as in the above example, the mapping choices
that the PCI BIOS has are limited. Some motherboards may use more lines and thus have more choices. For
example LNKA-LNKH (8 lines). The boot-time messages (and dmesg) may display them and how they are
mapped. The BIOS knows about how they are wired.

On the PCI bus, the BIOS (or Linux) assigns IRQs (interrupts) so as to avoid conflicts with the IRQs it knows
about on the ISA bus. Sometimes the CMOS BIOS menu may allow one to assign IRQs to PCI cards or to tell
the BIOS what IRQs are to be reserved for ISA devices. The assignments are known as a "routing table". In
MS Windows it's called "IRQ steering" but this also covers the case of dynamic IRQ routing after boot-time.
The BIOS may support it's own IRQ steering.

If your PC uses PCI interrupts which are mapped to ISA interrupts, you right think that interrupts might be
slow since the ISA bus was slow. Not really. The ISA Interrupt Controller Chip(s) has a direct interrupt wire
going to the CPU so it can get immediate attention. While signals on the old ISA address and data buses are
slow to get to the CPU, the IRQ interrupt signals get there very fast.

8. PnP for External and Plug-in Devices

8.1 USB Bus

The USB (Universal Serial Bus) is a high speed bus on an external cable that plugs into a PC. The external
bus cable has its own communication protocols and doesn't use any IRQs, I/0 addresses (or other
bus-resources). Communication is by packets, something like the Internet, only there are time-slice allocations
which prevent any one device from hogging the bus if other devices need it. There are free time slots which
allow every device to send a short message to the bus controller without any need for IRQs on the bus.

However, the USB bus controller inside the PC does have an IRQ and an address on the PCI bus (or ISA)
which are used for communication between the CPU and all devices on the USB. Thus there's no resource
allocations needed for the individual devices on the USB. One could also think of this as all devices on the
USB sharing the one interrupt and address. If a device is on the USB it needs a driver that understands the
USB.

 Plug-and-Play-HOWTO

7.8 PCI Interrupt Linking 35

But each device on the USB does have an IDs, just like cards do on the PCI bus. So Linux likely maintains a
table of these IDs so that device drivers can check them to find their device. The USB also support "hot plug".
To find out what is on the USB bus, you could use a general hardware detection tool like "discover" or
"hwinfo".

8.2 Hot Plug

"Hot plug" is where you plug something into a PC (usually via a cable connection) and it is instantly detected.
If required, it is configured with bus-resources. The driver for it is also started, perhaps by loading a module
for it. For this to work the hardware used must be designed for hot plugging. One can hot plug certain PCI
cards (Cardbus), USB devices, and IEEE 1394 devices (Firewire).

When a new device is detected, it's registers are read so as to get the ID number of the device. Then to find a
driver, Linux must maintain a table mapping ID numbers to drivers. It wasn't until kernel 2.4 that such a table
existed since Linux once shunned centralized PnP. It's named: MODULE_DEVICE_TABLE.

8.3 Hot Swap

"Hot Swap" is where you remove an old device and then plug in a new device to replace the old one. You
have thus "swapped" devices. Now in addition to being able to detect that a new device has been plugged in,
the removal of the old device needs to be detected too.

8.4 PnP Finds Devices Plugged Into Serial Ports

External devices that connect to the serial port via a cable (such as external modems) can also be called
Plug-and-Play. Since only the serial port itself needs bus-resources (an IRQ and I/O address) there are no
bus-resources to allocate to such plug-in devices. In this case, PnP is used only to identify the modem (read
it's model code number). This could be important if the modem is a software modem (linmodem) and requires
a special driver. There is a special PnP specification for such external serial devices (something connected to
the serial port).

Linux doesn't support this yet ?? For a hardware modem, the ordinary serial driver will work OK so there's
little need for using the special serial PnP to find a driver. You still need to tell the communications program
what port (such as /dev/ttyS1) the modem is on. With PnP you wouldn't need to even do this. With the advent
of software modems that have Linux drivers (linmodems), it would be nice to have the appropriate driver
install itself automatically via PnP.

9. Error Messages

9.1 Unexpected Interrupt

This means that an interrupt happened that no driver expected. It's unlikely that the hardware issued an
interrupt by mistake. It's more likely that the software has a minor bug and doesn't realize that some software
did something to cause the interrupt. In many cases you can safely ignore this error message, especially if it
only happens once or twice at boot-time. For boot-time messages, look at the messages which are nearby for a
clue as to what is going on. For example, if probing is going on, perhaps a probe for a physical device caused
that device to issue an interrupt that the driver didn't expect. Perhaps the driver wasn't listening for the correct
IRQ number.

 Plug-and-Play-HOWTO

8.1 USB Bus 36

9.2 Plug and Play Configuration Error (Dell BIOS)

The BIOS was unable to configure bus-resource. There may be an interrupt conflict which can't be avoided.
Dell suggests that you remove some of your non-essential cards and see if it goes away. In one case this
problem was due to a defective motherboard.

9.3 isapnp: Write Data Register 0xa79 already used (from
logs)

If you use isa-pnp, the IO address 0xa79 must not ever be used by any device. So if other hardware is using
0xa79 when you try to load the isa-pnp module, you'll get this message in your logs and the isa-pnp will exit.
One way to try to fix this is to load the isa-pnp module early before other hardware is initialized. For
PCMCIA this means to load isa-pnp before running cb modules and service.

9.4 Can't allocate region (PCI)

Here "region" means address range. A PCI device that needs two addresses will have region 0 for the first
address and region 1 for the second address needed. Use the command: lspci -vv to see the various resource
regions (often just called regions) and whether the address is of type IO or memory. In PCI jargon region 2 is
"base address 2" (or "base address register 2"), etc.

10. Interrupt Sharing and Interrupt Conflicts

10.1 Introduction

When two or more devices use the same interrupt line (and the same IRQ number) it's either "Interrupt
Sharing" or an "Interrupt Conflict". The PCI bus allows all PCI devices to share interrupts with each other so
this is called "sharing". But if an ISA device (or a LPC device ??) uses the same interrupt (IRQ) as some other
device (either PCI, ISA, or LPC ??) there is usually an interrupt conflict.

There are exceptions to what's stated above. Some very old PCI devices (pre 1995 ??) do not allow interrupt
sharing. Conversely, a few ISA devices have been designed to share interrupts (between two ISA devices ??)
but both ISA devices must be designed this way and be driven by software that knows about sharing
interrupts. The motherboard must support it too. The following discussion pertains to PCs that have an ISA
bus.

A conflict means that when an interrupt happens, no device driver (or the wrong one) may be called and bad
things happen like buffer overruns (loss of data). A device may nearly ground its interrupt line when it's not
sending its interrupt, thus preventing any other device from using that interrupt wire. That's OK if only that
device uses that interrupt. But if a second device tries to use the same interrupt line it can't do so. If this
second device also nearly grounds the line when not sending an interrupt, then neither device can use the
interrupt. But both Linux and the two devices are unaware of this conflict and merrily send out interrupts
anyway that mostly go nowhere and are thus lost.

Interrupt conflicts were common when the IRQs were set by jumpers on cards (ISA bus) because the kernel
often didn't know how these jumpers were set. ISA plug-and-play (no jumpers on the cards) helped since the
software could change IRQs. The demise of ISA in favor of PCI has nearly eliminated IRQ conflicts. Still,

 Plug-and-Play-HOWTO

9.2 Plug and Play Configuration Error (Dell BIOS) 37

your PC likely has devices on the motherboard (not on a plug-in card) on an ISA bus, a LPC bus, or an X-bus.
But the BIOS and the kernel should know how these are set and thus avoid using them for PCI devices,
thereby avoiding interrupt conflicts. But there is still a possible interrupt problem with PCI since it could run
out of available interrupts, especially on older PCs that only have 16 interrupts.

But IRQ sharing on the PCI bus, while eliminating the conflict problem, has introduced another problem
which is less serious: the IRQ balancing problem. If too many high-irq-issuing devices share the same IRQ, it
may cause delays in the IRQs getting serviced and can't even result in buffer overruns and other errors. This is
not due to congestion on the interrupt line, but it's due to the way that the software determines which device
issued the interrupt. PCI interrupt sharing

There are two types of interrupt conflicts. One is a real conflict as described above. In this case interrupts
don't work and the device driver keeps trying to control its device and is not aware that interrupts are not
working. The second type of interrupt conflict is where a device driver is started but discovers that the
interrupt it needs is already in use so it issues an error message and exits. The message could say something
like "resource busy", and not clearly state that it was an interrupt problem.

10.2 Real Interrupt Conflict

Both the BIOS and the the kernel will not knowingly allow any interrupt conflict, so how can they happen?
One way is if someone has put an incorrect IRQ into a configuration file, such as giving a parameter to a
module like: irq=9. In this example, suppose the irq of the device is really irq5. Then when another device
driver starts up where its device is set to irq5, you have two real devices using irq5 and a real conflict. The
kernel approved of letting the second device use irq5 since it erroneously thought that the first device was
using irq9 and that irq5 was free.

There are other cases like this where the kernel fails to know that an irq is in use. One is when an old ISA card
with an irq set by a jumper is present, but it's driver hasn't started yet (or it may not even have a driver).
Another case is where the BIOS set an irq in the hardware but no linux driver for that hardware ever started
and Linux doesn't know about that irq. This can happen even for a PCI card and the irq will show up in lspci
-v but will not be in the /proc/interrupts directory and thus not known by the kernel. Is this a bug in the
kernel?

What are the symptoms of an interrupt conflict. One might think that the devices will not work at all, but since
the addresses are known, the driver does communicate. Interrupts are often used to control the flow of data to
and from the device and without interrupts, flow is not controlled. This may mean buffer overruns or even no
flow at all since interrupt are used to initiate flow. For a serial modem, the result is extremely slow flow with
long pauses and frequent errors. For a sound card it may mean that a word or two is heard and then nothing
more.

10.3 No Interrupt Available

This is when a device driver starts but immediately exits in order to avoid an interrupt conflict. It should
display or log an error message something like "resource busy".

One case when an ISA device is activated but can't be assigned an interrupt (IRQ) since none are available. Or
an interrupt may be available, but it can't be used since the hardware of the device that needs the interrupt
doesn't support the interrupt number available (or the motherboard doesn't support it due to "routing"
problems, see PCI Interrupts). If the ISA devices use up all the interrupts, then one or more PCI cards may be
in conflict since they can't get any IRQs.

 Plug-and-Play-HOWTO

10.1 Introduction 38

Normally, the BIOS will assign interrupts and will not create conflicts. But it may be forced to create conflicts
if it runs out of IRQs. This can happen if someone has set up the BIOS to reserve certain IRQs for legacy ISA
devices that are not PnP. These settings may be wrong and should be checked out, especially if you're having
problems. For example, someone may have reserved an IRQ for an ISA card that has long since been removed
from the PC. If you unreserved this IRQ then this IRQ is available and and conflict disappears.

Sometimes the BIOS will solve the problem of an IRQ shortage by using what it calls IRQ 0. There is no such
IRQ available since the real IRQ 0 is permanently assigned to the computer's timer. But IRQ 0 here means
that the driver should use polling instead of IRQs. This means that the driver frequently checks the device
(polls it) to see if the device needs servicing by the interrupt service routine. Of course, this wastes computer
time and there's more likelihood of a buffer overrun inside a device since it might not get serviced by the
driver promptly enough.

11. Appendix

11.1 Universal Plug and Play (UPnP)

This is actually a sort of network plug-and-play developed by Microsoft but usable by Linux. You plug
something into a network and that something doesn't need to be configured provided it will only communicate
with other UPnP enabled devices on the network. Here "configure" is used in the broad sense and doesn't
mean just configuring bus-resources. One objective is to allow people who know little about networks or
configuring to install routers, gateways, network printers, etc. A major use for UPnP would be in wireless
networking.

UPnP uses:

Simple Service Discovery Protocol to find devices•
General Event Notification Architecture•
Simple Object Access Protocol for controlling devices•

This HOWTO doesn't cover UPnP. UPnP for Linux is supported by Intel which has developed software for it.
There are other programs which do about the same thing as UPnP. A comparison of some of them is at
http://www.cs.umbc.edu/~dchakr1/papers/mcommerce.html A UPnP project for Linux is at SourceForge:
UPnP SDK for Linux

11.2 Address Details

There are three types of addresses: main memory addresses, I/O addresses (ports) and configuration addresses.
On the PCI bus, configuration addresses constitute a separate address space just like I/O addresses do. Except
for the complicated case of ISA configuration addresses, whether or not an address on the bus is a memory
address, I/O address, or configuration address depends only on the voltage on other wires (traces) of the bus.
For the ISA configuration addresses see ISA Bus Configuration Addresses (Read-Port etc.) for details

Address ranges

The term "address" is sometimes used in this document to mean a contiguous range of addresses. Addresses
are in units of bytes, So for example, a serial port at I/O address range 3F8-3FF will often just be referred to
by its base address, 3F8. The 3F8 is the location of the first byte in the range (address range). To see the
address ranges for various devices, look at /proc/iomem and /proc/ioports.

 Plug-and-Play-HOWTO

10.3 No Interrupt Available 39

http://www.cs.umbc.edu/~dchakr1/papers/mcommerce.html
http://sourceforge.net/projects/upnp/

Address space

To access both I/O and (main) memory address "spaces" the same address bus is used (the wires used for the
address are shared). How does the device know whether or not an address which appears on the address bus is
a memory address or I/O address? Well, for ISA (for PCI read this too), there are 4 dedicated wires on the bus
that convey this sort of information. If a certain one of these 4 wires is asserted, it says that the CPU wants to
read from an I/O address, and the main memory ignores the address on the bus. In all, read and write wires
exist for both main memory and I/O addresses (4 wires in all).

For the PCI bus it's the same basic idea (also using 4 wires) but it's done a little differently. Instead of only
one of the four wires being asserted, a binary number is put on the wires (16 different possibilities). Thus,
more info may be conveyed by these 4 wires.. Four of these 16 numbers serve the I/O and memory spaces as
in the above paragraph. In addition there is also configuration address space which uses up two more
numbers. This leaves 10 more numbers left over for other purposes.

PCI Configuration Address Space

This is different from the IO and memory address spaces because configuration address space is "geographic".
Each slot for a card has the slot number as part of the address. This way, Linux (or the BIOS) can address a
certain slot and find out what type of card is in that slot. Each device has 64 standard byte-size registers and
some of these hold numbers which can unambiguously identify the device. Since the number of slots is
limited as are the number of PCI devices built into motherboard, Linux (or the BIOS) only needs to check a
limited number of addresses to find all the PCI devices. If it reads all ones (0xFF in hexadecimal) from the
first register of a device, then that means that no device is present. Since there is no card or device to supply
all these ones (0xFF) number, the PCI "host bridge" on the motherboard supplies (spoofs) this number for all
non-existent device.

The PCI slot number is called (in PCI lingo) the "Device Number" and since a card may have up to 8 devices
on it, a "Function Number" from 0-7 identifies which device it is on a PCI card. These numbers are part of the
geographic address. Linux programmers call it "pci-slot-name". Thus what Linux calls a "device" is actually a
"function" in PCI lingo. The PCI bus number (often 00) also becomes part of the geographic address. For
example, 0000:00:0d.2 is PCI bus 0, slot 0d, function 2. For the full geographic address, one must include the
double-word number of the device's configuration registers which one wants to access. The leading 0000 (in
1999) were reserved for future use.

How does the CPU designate that a read or write is to a PCI configuration space? It doesn't, at least not
directly. Instead when access to configuration space is desired it does a 32-bit (double-word) write to
0cf8-0cfb in IO space and writes the full geographic address there. The PCI host bridge is listening at this
address and insures that any next write of data to 0cfc-0cff is put into the specified configuration registers of
the specified device. The bridge does this both by sending a special signal to the specified PCI card (or the
like) on a dedicated wire that goes only to the slot where the card is plugged in. It also puts bits on the control
bus saying that what's on the address bus now is a geographic configuration space address.

Why not make it simple and just have the CPU put bits on the control bus to say that the address on the main
bus is a geographic one for PCI configuration? Well, most CPU's are not capable of doing this so the PCI host
bridge gets to do it instead.

 Plug-and-Play-HOWTO

Address space 40

Range Check (ISA Testing for IO Address Conflicts)

On the ISA bus, there's a method built into each PnP card for checking that there are no other cards that use
the same I/O address. If two or more cards use the same IO address, neither card is likely to work right (if at
all). Good PnP software should assign bus-resources so as to avoid this conflict, but even in this case a legacy
card might be lurking somewhere with the same address.

The test works by a card putting a known test number in its own IO registers. Then the PnP software reads it
and verifies that what it reads is the same as the known test number. If not, something is wrong (such as
another card with the same address). It repeats the same test with another test number. Since it actually checks
the range of IO addresses assigned to the card, it's called a "range check". It could be better called an
address-conflict test. If there is an address conflict you get an error message.

Communicating Directly via Memory

Traditionally, most I/O devices used only I/O memory to communicate with the CPU. The device driver,
running on the CPU would read and write data to/from the I/O address space and main memory.
Unfortunately, this requires two steps. For example, 1. read data from a device (in IO address space) and
temporarily store in in the CPU; 2. write this data to main memory. A faster way would be for the device itself
to put the data directly into main memory. One way to do this is by using ISA DMA Channels or PCI bus
mastering. Another way is for the physical device to actually contain some main memory (at high addresses so
as not to conflict with main memory chip addresses). This way the device reads and writes directly to it's
self-contained main memory without having to bother with DMA or bus mastering. Such a device may also
use IO addresses.

11.3 ISA Bus Configuration Addresses (Read-Port etc.)

These addresses are also known as the "Auto-configuration Ports". For the ISA bus, there is technically no
configuration address space, but there is a special way for the CPU to access PnP configuration registers on
the PnP cards. For this purpose 3 @ I/O addresses are allocated and each addresses only a single byte (there is
no "range"). This is not 3 addresses for each card but 3 addresses shared by all ISA-PnP cards.

These 3 addresses are named read-port, write-port, and address-port. Each port is just one byte in size. Each
PnP card has many configuration registers so that just 3 addresses are not even sufficient for the configuration
registers on a single card. To solve this problem, each card is assigned a card number (handle) using a
technique called "isolation". See ISA Isolation for the complex details.

Then to configure a certain card, its card number (handle) is sent out via the write-port address to tell that card
that it is to listen at its address port. All other cards note that this isn't their card number and thus don't listen.
Then the address of a configuration register (for that card) is sent to the address-port (for all cards --but only
one is listening). Next, data transfer takes place with that configuration register on that card by either doing a
read on the read-port or a write on the write-port.

The write-port is always at A79 and the address-port is always at 279 (hex). The read-port is not fixed but is
set by the configuration software at some address (in the range 203-3FF) that will hopefully not conflict with
any other ISA card. If there is a conflict, it will change the address. All PnP cards get "programmed" with this
address. Thus if you use say isapnp to set or check configuration data it must determine this read-port address.

 Plug-and-Play-HOWTO

Range Check (ISA Testing for IO Address Conflicts) 41

11.4 Interrupts --Details

Serialized Interrupts

It was previously stated that there was a wire for each interrupt. But the serialized interrupt (or serial interrupt)
is an exception. A single wire is used for all interrupt which are multiplexed on that wire. Each interrupt has a
time slot on the interrupt line. It's used on the LPC bus and is also for the PCI bus, but it's seldom used for PCI
??

DMA

Before going into interrupt details, there is another way for some devices to initiate communication besides
sending out an interrupt. This method is a DMA (Direct Memory Access) request to take control of the
computer from the CPU for a limited amount of time. On the PCI bus, it uses no "resources". Not all devices
are capable of doing DMA. See DMA Channels.

Soft interrupts

There's also another type of interrupt known as a "soft interrupt" which is not covered in this HOWTO and
doesn't use any "resources". While a hardware interrupt is generated by hardware, a soft interrupt is initiated
by software. There are a couple of ways to do this. One way is for software to tell the CPU to issue an
interrupt (an interrupt instruction). Another way is for the software to send messages to other processes so as
to interrupt them although it's not clear that this should be called an interrupt. The ksoftirq process, which you
may find running on a Linux PC, is a program which does this kind of interrupt for dealing with device
drivers. The device driver starts running due to a hardware interrupt but later on, software interrupts are used
for the "bottom half" of the driver's interrupt service routine. Thus, the ksoftirq process is also known as
"bottom-half". For more details see the kernel documentation.

Hardware interrupts

Interrupts convey a lot of information but only indirectly. The interrupt request signal (a voltage on a wire)
sent by a device just tells a chip called the interrupt controller that a certain device needs attention. The
interrupt controller then signals the CPU. The CPU then interrupts whatever it was doing, finds the driver
code for this device and runs a part of it known as an "interrupt service routine" (or "interrupt handler"). This
"routine" tries to find out what has happened and then deals with the problem. For example, bytes may need to
be transferred from/to the device. This program (routine) can easily find out what has happened since the
device has registers at addresses known to the driver software (provided the IRQ number and the I/O address
of the device has been set correctly). These registers contain status information about the device . The
software reads the contents of these registers and by inspecting the contents, finds out what happened and
takes appropriate action.

Thus each device driver needs to know what interrupt number (IRQ) to listen for. On the PCI bus (and for
some special cases on the ISA bus) it's possible for two (or more) devices to share the same IRQ number.
Note that you can't share a PCI interrupt with an ISA interrupt (are there any exceptions ??). When a shared
interrupt is issued, the CPU runs all interrupt service routines sequentially for all devices using that interrupt.
The first thing such a service routine does is to check its device's registers to see if an interrupt actually
happened for its device. If it finds that its device didn't issue an interrupt (a false alarm) then it likely will
immediately exit and the next service routine begins for the second device which uses that same interrupt. It
checks out the device like described above. This sequence is repeated until the device is found that actually

 Plug-and-Play-HOWTO

 11.4 Interrupts --Details 42

issued the interrupt. All the interrupt routines for an interrupt are said to be constitute a chain. So the chain is
traversed until a routine on the chain claims the interrupt by saying in effect: this interrupt was for me. After it
handles the interrupt, the interrupt service routines further out on the chain don't run.

The putting of a voltage on the IRQ line is only a request that the CPU be interrupted so it can run a device
driver. In almost all cases the CPU is interrupted per the request. But interrupts may be temporarily disabled
or prioritized so that in rare cases the actual interrupt of the CPU doesn't happen (or gets delayed). Thus what
was above called an "interrupt" is more precisely only an interrupt request and explains why IRQ stands for
Interrupt ReQuest.

11.5 How the Device Driver Catches its Interrupt

The previous statement, that device drivers listen for their interrupt, was an oversimplification. Actually it's a
chip (or part of a chip) on the motherboard called the "interrupt controller" that listens for all interrupts. When
the interrupt controller catches an interrupt, it sends a signal to the CPU to start the appropriate device driver's
"interrupt service routine" to handle the interrupt.

There are various types of interrupt controllers. One type is the APIC = Advanced Programmable Interrupt
Controller which usually has input pins for many interrupts, including PCI interrupts. Older controllers only
have pins for ISA interrupts but they can still handle PCI interrupts since there is a "programmable interrupt
router" that converts PCI interrupts to ISA interrupts and routes them to certain pins (= certain IRQs) on the
ISA interrupt controller.

11.6 ISA Isolation

This is only for the old ISA bus. Isolation is a complex method of assigning a temporary handle (id number or
Card Select Number = CSN) to each PnP device on the ISA bus. Since there are more efficient (but more
complex) ways to do this, some might claim that it's a simple method. Only one write address is used for PnP
writes to all PnP devices so that writing to this address goes to all PnP device that are listening. This write
address is used to send (assign) a unique handle to each PnP device. To assign this handle requires that only
one device be listening when the handle is sent (written) to this common address. All PnP devices have a
unique serial number which they use for the process of isolation. Doing isolation is something like a game. It's
done using the equivalent of just one common bus wire connecting all PnP devices to the isolation program.

For the first round of the "game" all PnP devices listen on this wire and send out simultaneously a sequence of
bits to the wire. The allowed bits are either a 1 (positive voltage) or an "open 0" of no voltage (open circuit or
tri-state). To do this, each PnP device just starts to sequentially send out its serial number on this wire, voltage
(open circuit or tri-state). To do this, each PnP device just starts to sequentially send out its serial number on
this wire, bit-by-bit, starting with the high-order bit. If any device sends a 1, a 1 will be heard on the wire by
all other devices. If all devices send an "open 0" nothing will be heard on the wire. The object is to eliminate
(by the end of this first round) all but highest serial number device. "Eliminate" means to drop out of this
round of the game and thus temporarily cease to listen anymore to the wire. (Note that all serial numbers are
of the same length.) When there remains only one device still listening, it will be given a handle (card
number).

First consider only the high-order bit of the serial number which is put on the wire first by all devices which
have no handle yet. If any PnP device sends out a 0 (open 0) but hears a 1, this means that some other PnP
device has a higher serial number, so it temporarily drops out of this round. Now the devices remaining in the
game (for this round) all have the same leading digit (a 1) so we may strip off this digit and consider only the
resulting "stripped serial number" for future participation in this round. Then go to the start of this paragraph

 Plug-and-Play-HOWTO

Hardware interrupts 43

and repeat until the entire serial number has been examined for each device (see below for the all-0 case).

Thus it's clear that only cards with the lower serial number get eliminated during a round. But what happens if
all devices in the game all send out a 0 as their high-order bit? In this case an "open 0" is sent on the line and
all participants stay in the game. If they all have a leading 0 then this is a tie and the 0's are stripped off just
like the 1's were in the above paragraph. The game then continues as the next digit (of the serial number) is
sent out.

At the end of the round (after the low-order bit of the serial number has been sent out) only one PnP device
with the highest serial number remains in the game. It then gets assigned a handle and drops out of the game
permanently. Then all the dropouts from the previous round (that don't have a handle yet) reenter the game
and a new round begins with one less participant. Eventually, all PnP devices are assigned handles. It's easy to
prove that this algorithm works. The actual algorithm is a little more complex than that presented above since
each step is repeated twice to ensure reliability and the repeats are done somewhat differently (but use the
same basic idea).

Once all handles are assigned, they are used to address each PnP device for sending/reading configuration
data. Note that these handles are only used for PnP configuration and are not used for normal communication
with the PnP device. When the computer starts up a PnP BIOS will often do such an isolation and then a PnP
configuration. After that, all the handles are "lost" so that if one wants to change (or inspect) the configuration
again, the isolation must be done over again.

11.7 Bus Mastering and DMA resources

If a bus has bus mastering available, it's unlikely that any resources will be needed for DMA on that bus. For
example, the PCI bus doesn't need DMA resources since it has "bus mastering". However, "bus mastering" is
often called DMA. But since it's not strictly DMA it needs no DMA resources. The ISA and VESA local bus
had no bus mastering. The old MCA and EISA buses did have bus mastering.

11.8 Historical and Obsolete

OSS-Lite Sound Driver

You must give the IO, IRQ, and DMA as parameters to a module or compile them into the kernel. But some
PCI cards will get automatically detected. RedHat supplies a program "sndconfig" which detects ISA PnP
sound cards and automatically sets up the modules for loading with the detected bus-resources.

ALSA (Advanced Linux Sound Architecture) as of 2000

This will detect the card by PnP methods and then select the appropriate driver and load it. It will also set the
bus-resources on an ISA-PnP cards or PCI cards. OSS (Open Sound System) was formerly popular.

MS Windows Notes

Windows NT4 didn't support ISAPNP but had a PNPISA program which one could "use at your own risk".
For NT4 users were advised to set "not a PnP OS" in the BIOS so that the BIOS would do the resource
configuring. Thus both MS Windows and Linux were in olden days dependent on the BIOS doing the
configuring (and still are).

 Plug-and-Play-HOWTO

11.6 ISA Isolation 44

END OF Plug-and-Play-HOWTO

 Plug-and-Play-HOWTO

MS Windows Notes 45

	Table of Contents
	 Plug-and-Play-HOWTO
	David S. Lawyer mailto:dave@lafn.org
	1. Introduction
	2. What PnP Should Do: Allocate "Bus-Resources"
	3. Setting up a PnP BIOS
	4. How to Deal with PnP Cards
	5. Tell the Driver the Configuration ??
	6. How Do I Find Devices and How Are They Configured?
	7. PCI Interrupts
	8. PnP for External and Plug-in Devices
	9. Error Messages
	10. Interrupt Sharing and Interrupt Conflicts
	11. Appendix
	1. Introduction
	1.1 1. Copyright, Trademarks, Disclaimer, & Credits
	Copyright
	Disclaimer
	Trademarks.
	Credits

	1.2 Future Plans; You Can Help
	1.3 New Versions of this HOWTO
	1.4 New in Recent Versions
	1.5 General Introduction. Do you need this HOWTO?
	2. What PnP Should Do: Allocate "Bus-Resources"
	2.1 What is Plug-and-Play (PnP)?
	 2.2 Hardware Devices and Communication with them
	2.3 Addresses
	2.4 I/O Addresses (principles relevant to other resources too)
	 2.5 Memory Ranges
	 2.6 IRQs --Overview
	 2.7 DMA (Direct Memory Access) or Bus Mastering
	 2.8 DMA Channels (not for PCI bus)
	2.9 "Resources" for both Device and Driver
	2.10 Resources are Limited
	Ideal Computers
	Real Computers

	2.11 Second Introduction to PnP
	2.12 How Pnp Works (simplified)
	2.13 Starting Up the PC
	2.14 Buses
	 2.15 How Linux Does PnP
	2.16 Problems with Linux PnP
	 3. Setting up a PnP BIOS
	 3.1 Do you have a PnP operating system?
	 Linux prior to the 2.4 kernel
	Windows 2000 and XP
	MS Windows 95, 98 (and Me ?)

	 3.2 Assigning Resources by the BIOS
	 3.3 Reset the configuration?
	4. How to Deal with PnP Cards
	4.1 Introduction to Dealing with PnP Devices
	 4.2 Device Driver Configures, Reserving Resources
	 4.3 /sys User Interface Configures
	 4.4 BIOS Configures
	Intro to Using the BIOS to Configure PnP
	 The BIOS's ESCD Database
	 Using Windows to set the ESCD
	Adding a New Device (under Linux or Windows)

	 4.5 ISA cards only: Disable PnP ?
	 4.6 ISA Bus: Isapnp (part of isapnptools)
	 4.7 PCI Utilities
	 4.8 Windows Configures
	 4.9 PnP Software/Documents
	 5. Tell the Driver the Configuration ??
	5.1 Introduction
	5.2 Serial Port Driver Example
	 6. How Do I Find Devices and How Are They Configured?
	6.1 Finding and How-Configured Are Related
	6.2 Devices May Have Two "Configurations"
	6.3 Finding Hardware
	 6.4 Boot-time Messages
	 6.5 The /proc Tree
	 6.6 The /sys Tree
	 6.7 PCI Bus Inspection
	 6.8 ISA Bus Introduction
	 6.9 ISA PnP cards
	 6.10 LPC Bus
	6.11 X-bus
	 6.12 Non-PnP Cards
	 6.13 Non-PnP Cards with jumpers
	 6.14 Neither PnP nor jumpers
	 6.15 Tools for Detecting and/or Configuring all Hardware
	 6.16 Tools for Detecting and Configuring One Type of Hardware
	 6.17 Use MS Windows
	 7. PCI Interrupts
	7.1 Introduction
	7.2 History: From ISA to PCI Interrupts
	7.3 Advanced Programmable Interrupt Controller (APIC)
	7.4 Message Signalled Interrupts (MSI)
	7.5 Sharing PCI Interrupts
	7.6 Looking at Routing Tables
	7.7 For More Information
	7.8 PCI Interrupt Linking
	8. PnP for External and Plug-in Devices
	8.1 USB Bus
	8.2 Hot Plug
	8.3 Hot Swap
	8.4 PnP Finds Devices Plugged Into Serial Ports
	9. Error Messages
	9.1 Unexpected Interrupt
	9.2 Plug and Play Configuration Error (Dell BIOS)
	9.3 isapnp: Write Data Register 0xa79 already used (from logs)
	9.4 Can't allocate region (PCI)
	10. Interrupt Sharing and Interrupt Conflicts
	10.1 Introduction
	10.2 Real Interrupt Conflict
	10.3 No Interrupt Available
	11. Appendix
	 11.1 Universal Plug and Play (UPnP)
	 11.2 Address Details
	Address ranges
	Address space
	 PCI Configuration Address Space
	Range Check (ISA Testing for IO Address Conflicts)
	Communicating Directly via Memory

	 11.3 ISA Bus Configuration Addresses (Read-Port etc.)
	 11.4 Interrupts --Details
	Serialized Interrupts
	DMA
	Soft interrupts
	Hardware interrupts

	11.5 How the Device Driver Catches its Interrupt
	 11.6 ISA Isolation
	11.7 Bus Mastering and DMA resources
	11.8 Historical and Obsolete
	OSS-Lite Sound Driver
	ALSA (Advanced Linux Sound Architecture) as of 2000
	MS Windows Notes

