
Querying libiptc HOWTO

Leonardo Balliache

leonardo@opalsoft.net

Version 0.1 − April 30, 2002

Revision History

Revision 0.1 2002−04−30 Revised by: lb

Initial release.

Table of Contents
1. Legal Notice...1

2. Translations...2

3. Disclaimer..3

4. Credits..4

5. Objectives...5

6. What is libiptc?...6

7. How did I obtain this knowledge?...7

8. Previous knowledge and system requirements...8

9. Installing iptables + libiptc...9

10. How to create your program(s)...11

11. Functions to query libiptc ..12
11.1. iptc_init...12
11.2. iptc_strerror...12
11.3. iptc_first_chain...13
11.4. iptc_next_chain...13
11.5. iptc_is_chain...15
11.6. iptc_builtin..15
11.7. iptc_first_rule..16
11.8. iptc_next_rule...16
11.9. iptc_get_target...16
11.10. iptc_get_policy..23
11.11. iptc_read_counter..24

12. Functions to modify firewalling rules and statistics..25
12.1. iptc_commit..25
12.2. iptc_insert_entry...25
12.3. iptc_replace_entry...26
12.4. iptc_append_entry...26
12.5. iptc_delete_num_entry..27
12.6. iptc_flush_entries..27
12.7. iptc_zero_entries...27
12.8. iptc_create_chain..28
12.9. iptc_delete_chain..28
12.10. iptc_rename_chain..29
12.11. iptc_set_policy..29
12.12. iptc_zero_counter..29
12.13. iptc_set_counter..30

Querying libiptc HOWTO

i

Table of Contents
13. Bandwidth meter...31

14. Controlling flows...39

15. Some interesting links...42

16. About the author...43

Querying libiptc HOWTO

ii

1. Legal Notice
This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version. This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details. You can get a copy of the
GNU GPL here.

1. Legal Notice 1

http://www.gnu.org/copyleft/gpl.html

2. Translations
If you want to translate this document you are free to do so. However, you will need to do the following:

Check first that another version of the document doesn't already exist at your local LDP. 1.
Maintain all sections (including 'Legal Notice', 'Translation', 'Credits', etc., etc.) of the document. 2.
No need to ask me to translate! You just have to let me know (if you want) about your translation. 3.

Thank for your translation.

2. Translations 2

3. Disclaimer
I took this "disclaimer" from Linux−Advance Networking Overview by Saravanan Radhakrishnan (08−1999)
because it applies in my own case:

All the text in this document is completely based on my understanding of implementations of various
features. I have read some documents and have seen the code myself, and I described them based on my
understanding. If the reader notices any concept description which appears to be contrary to their
understanding of the concept, the issue can be taken up for discussion and corrections will be made to the
document as necessary. I would appreciate any suggestions and comments made in order to improve the
quality of this document.

3. Disclaimer 3

http://qos.ittc.ukans.edu/howto/howto.html

4. Credits
I want to thank the following people and organizations who had helped me, directly or not, to make this
document possible:

My wife Cielo and my sons Jose, Dario and Gustavo by their patient and support. •
Linux Documentation Project for publishing and uploading my document. •
The site http://www.docum.org drived by Stef Coene that give me some ideas for writing this
document.

•

Paul "Rusty" Rusell who write the kernel firewall code, the excelent package iptables and the
associated library libiptc.

•

Harald Welte who write the utility iptables−save. •
Alexey Kuznetsov who write the kernel queue discipline code and the excelent package iproute2. •
Tabatha Persad from the Linux Documentation Project who revised my english syntax and writing,
gave me several ideas to improve the content and encouraged me to learn and use DocBook to write
the final version of this document.

•

4. Credits 4

http://www.tldp.org
http://www.docum.org
http://www.tldp.org

5. Objectives
This HOWTO explains how to use the libiptc library included in the iptables package. This document can
show you how to use short C or C++ programs to query the internal structure of the firewalling code, to
check chains and rules, packet and byte counters, and in a second phase, if you are a little "brave", to modify
them.

You can find the latest version of this document at Querying libiptc HOWTO.html.

If you have suggestions to help make this document better, please submit your ideas to me at the following
address: leonardo@opalsoft.net.

While I wrote this HOWTO, I developed a simple bandwith meter using user−defined chains to get the data
to be measured. This idea was conceived looking at monitor.pl, a simple perl program for bandwith
measurement, written by Stef Coene at http://www.docum.org. I recommend this site to people interested in
bandwidth control and measurement.

5. Objectives 5

http://opalsoft.net/qos/libiptc/qlibiptc.html
mailto:leonardo@opalsoft.net
http://www.docum.org

6. What is libiptc?
libiptc is the library that is used to communicate with netfilter, the internal kernel code in charge of
firewalling and packet filtering. This code and iptables were written by Paul "Rusty" Russell. iptables was
developed using libiptc calls to get the job done.

If you want to have more information about iptables, libiptc and the firewalling code, have a look at links at
the end of this document.

6. What is libiptc? 6

7. How did I obtain this knowledge?
Just looking at code in iptables 1.2.6 package and especially at program iptables−save.c that use libiptc to
dump information from firewalling kernel code.

I will try to be very pragmatic and clear in order to make this HOWTO useful.

7. How did I obtain this knowledge? 7

8. Previous knowledge and system requirements
You have to have some previous knowledge to follow this document:

Very important: You must know how to use the iptables package as a user, such as how to create or
list rules and user chains. You do not need to be a firewall expert, but you should know how to use
iptables fluently.

1.

You have to have kernel sources installed in your system, in /usr/src/linux as usual. 2.

I am using a 2.4.16 kernel in a SuSE 7.1 Linux environment. You need 2.4.x kernel code to follow
this HOWTO, preferably kernel 2.4.16. For SuSE you can get the kernel sources at
ftp://ftp.gwdg.de/pub/linux/suse/ftp.suse.com/suse/i386/update.

You have to know how to compile the kernel if you have to update your kernel version. After
activating the netfilter options using make menuconfig, you must compile and install the kernel as
usual.

3.

Reboot your new kernel using init 6. Ensure that you backup a copy of your previous kernel in lilo in
case you encounter a problem and need to retrace your steps.

4.

Be sure that your new 2.4.x kernel is running fine. To install iptables−1.2.6 you will need to patch
the kernel again (and re−compile and install it), and it is better if you follow the previous two steps to
ensure that your kernel is running right before applying new iptables patches.

5.

8. Previous knowledge and system requirements 8

ftp://ftp.gwdg.de/pub/linux/suse/ftp.suse.com/suse/i386/update/

9. Installing iptables + libiptc
To install libiptc follow these steps:

Download iptables−1.2.6.tar.bz2 from http://netfilter.samba.org/. 1.
Copy the iptables tar file into /usr/local/src: 2.
bash# cp iptables−1.2.6.tar.bz2 /usr/local/src

Unpack: 3.
bash# tar xjvf iptables−1.2.6.tar.bz2

Go into the iptables directory: 4.
bash# cd iptables−1.2.6

Check to see if your kernel needs some aditional patches with: 5.
bash# make pending−patches KERNEL_DIR=/usr/src/linux

If your kernel source is located somewhere other than in /usr/src/linux, replace the kernel
source directory in the command line above with your source directory.

Be careful with this option. This command invokes patch−o−matic, a new patch verification utility
by Rusty Russell. The utility will show you a list of new patches (some proposed, some submitted,
some accepted) available for your kernel source. As Rusty himself says, "Some of these new patches
have bugs", and you do not have to apply all of them.

Read the information showed for each patch carefully and answer with y (apply the patch) or N (skip
this patch). In some cases answering y will try to apply the patch, but if the patch finds some
differences between your sources, it will be skipped and the next new one presented.

I did not apply any of the proposed patches and kept my kernel in its original state before continuing
to the next step.

Make the iptables package with: 6.
bash# make KERNEL_DIR=/usr/src/linux

Again, if your kernel source is not at /usr/src/linux, replace the kernel source directory in the
command above.

If all goes right the compiler will finish without errors.

Before the next step, check to see if you have installed iptables package by typing: 7.
bash# rpm −q iptables

If the iptables rpm is installed, you will see the name and version of the package, similar to:

iptables−1.1.2−13

In this case un−install with:

bash# rpm −e iptables

Install the new created package: 8.
bash# make install KERNEL_DIR=/usr/src/linux

9. Installing iptables + libiptc 9

http://netfilter.samba.org/

Again, check your kernel source directory.

This command will install the binaries (iptables, iptables−save, iptables−restore) in
/usr/local/sbin, the manuals in /usr/local/man/man8 and the modules in
/usr/local/lib/iptables.

Finally install the headers, development libraries and associated development man pages, with: 9.
bash# make install−devel

This command will install the libiptc library in /usr/local/lib.

I think something must be wrong with this command. It does not install all headers files properly, so
you must install them yourself using:

bash# cd /usr/local/src/iptables−1.2.6
bash# cp include/iptables.h /usr/local/include
bash# cp include/iptables_common.h /usr/local/include
bash# mkdir /usr/local/include/libiptc
bash# cp include/libiptc/libiptc.h /usr/local/include/libiptc
bash# cp include/libiptc/ipt_kernel_headers.h /usr/local/include/libiptc
bash# cp iptables.o /usr/local/lib

iptables.o is needed above to compile programs to get rule information from netfilter.

Now you are ready to create programs that can communicate directly with libiptc.

Querying libiptc HOWTO

9. Installing iptables + libiptc 10

10. How to create your program(s)
Create your program(s) in /usr/local/src; this way you will not have problems with gcc looking for
files in the "include" section.

Your program(s) would be something like this:

/* My program */

#include <getopt.h>
#include <sys/errno.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <dlfcn.h>
#include <time.h>
#include "libiptc/libiptc.h"
#include "iptables.h"

int main(void)
{
 /* Use always this part for your programs From here ... **** */
 iptc_handle_t h;
 const char *chain = NULL;
 const char *tablename = NULL;

 program_name = "my_program";
 program_version = NETFILTER_VERSION;
 /* To here ** */

 /* From here you write your own code */
 your code ...

} /* main */

The "include" section is a must in your c/c++ program(s). •
If you are using c++ do not forget to write extern "C" for these include. •

10. How to create your program(s) 11

11. Functions to query libiptc
This section explains which functions allow you to query libiptc. We will use the header file of libiptc, file
usr/local/include/libiptc/libiptc.h, containing prototypes of each function as a reference to
develop our explanation.

I have also included a brief description (when available) taken from Linux netfilter Hacking HOWTO within
each function explanation.

11.1. iptc_init

Name: iptc_init

Usage: Takes a snapshot of the rules.

Prototype: iptc_handle_t iptc_init(const char *tablename)

Description: This function must be called as initiator before any other function can be called.

Parameters: tablename is the name of the table we need to query and/or modify; this could be filter, mangle,
nat, etc.

Returns: Pointer to a structure of type iptc_handle_t that must be used as main parameter for the rest of
functions we will call from libiptc. iptc_init returns the pointer to the structure or NULL if it fails. If this
happens you can invoke iptc_strerror to get information about the error. See below.

Have a look at this section of code in file iptables−save.c for how to invoke this function:

 h = iptc_init(tablename);
 if (!h)
 exit_error(OTHER_PROBLEM, "Can't initialize: %s\n",iptc_strerror(errno));

11.2. iptc_strerror

Name: iptc_strerror

Usage: Translates error numbers into more human−readable form.

Prototype: const char *iptc_strerror(int err)

Description: This function returns a more meaningful explanation of a failure code in the iptc library. If a
function fails, it will always set errno. This value can be passed to iptc_strerror() to yield an error message.

Parameters: err is an integer indicating the error number.

Returns: Char pointer containing the error description.

11. Functions to query libiptc 12

http://netfilter.samba.org/documentation/HOWTO/

11.3. iptc_first_chain

Name: iptc_first_chain

Usage: Iterator functions to run through the chains.

Prototype: const char *iptc_first_chain(iptc_handle_t *handle)

Description: This function returns the first chain name in the table.

Parameters: Pointer to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Char pointer to the name of the chain.

11.4. iptc_next_chain

Name: iptc_next_chain

Usage: Iterator functions to run through the chains.

Prototype: const char *iptc_next_chain(iptc_handle_t *handle)

Description: This function returns the next chain name in the table; NULL means no more chains.

Parameters: Pointer to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Char pointer to the name of the chain.

These two previous functions allow to us to iterate through the chains of the table getting the name of each of
the chains; iptc_first_chain returns the name of the first chain of the table; iptc_next_chain returns the name
of next chains and NULL when the function reaches the end.

We can create Program #1 to exercise our understanding of these previous four functions:

/*
 * How to use libiptc− program #1
 * /usr/local/src/p1.c
 */

#include <getopt.h>
#include <sys/errno.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <dlfcn.h>
#include <time.h>
#include "libiptc/libiptc.h"
#include "iptables.h"

int main(void)

Querying libiptc HOWTO

11.3. iptc_first_chain 13

{
 iptc_handle_t h;
 const char *chain = NULL;
 const char *tablename = "filter";

 program_name = "p1";
 program_version = NETFILTER_VERSION;

 h = iptc_init(tablename);
 if (!h) {
 printf("Error initializing: %s\n", iptc_strerror(errno));
 exit(errno);
 }

 for (chain = iptc_first_chain(&h); chain; chain = iptc_next_chain(&h)) {
 printf("%s\n", chain);
 }

 exit(0);

} /* main */

Write this program and save it as p1.c in /usr/local/src.

Now write this "bash" script to simplify the compiling process:

#!/bin/bash

gcc −Wall −Wunused −DNETFILTER_VERSION=\"1.2.6\" −rdynamic −o $1 $1.c \
/usr/local/lib/iptables.o /usr/local/lib/libiptc.a −ldl

Save it as ipt−cc and do not forget to chmod 0700 ipt−cc.

Now compile your p1 program:

bash# ./ipt−cc p1

And run it:

bash# ./p1

You will get:

INPUT
FORWARD
OUTPUT

These are the three built−in iptables chains.

Now create some new chains using iptables and run your program again:

bash# iptables −N chain_1
bash# iptables −N chain_2
bash# ./p1

Querying libiptc HOWTO

11.3. iptc_first_chain 14

You will get:

INPUT
FORWARD
OUTPUT
chain_1
chain_2

Try to generate an error initializing tablename to myfilter instead of filter. When you compile and execute
your program again, you will get:

Error initializing: Table does not exist (do you need to insmod?)

iptables informs you that myfilter does not exist as a table.

11.5. iptc_is_chain

Name: iptc_is_chain

Usage: Check if a chain exists.

Prototype: int iptc_is_chain(const char *chain, const iptc_handle_t handle)

Description: This function checks to see if the chain described in the parameter chain exists in the table.

Parameters: chain is a char pointer containing the name of the chain we want to check to. handle is a pointer
to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: integer value 1 (true) if the chain exists; integer value 0 (false) if the chain does not exist.

11.6. iptc_builtin

Name: iptc_builtin

Usage: Is this a built−in chain?

Prototype: int iptc_builtin(const char *chain, const iptc_handle_t handle)

Description: This function is used to check if a given chain name is a built−in chain or not.

Parameters: chain is a char pointer containing the name of the chain we want to check to. handle is a pointer
to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if the given chain name is the name of a builtin chain; returns integer
value 0 (false) is not.

Querying libiptc HOWTO

11.5. iptc_is_chain 15

11.7. iptc_first_rule

Name: iptc_first_rule

Usage: Get first rule in the given chain.

Prototype: const struct ipt_entry *iptc_first_rule(const char *chain, iptc_handle_t *handle)

Description: This function returns a pointer to the first rule in the given chain name; NULL for an empty
chain.

Parameters: chain is a char pointer containing the name of the chain we want to get the rules to. handle is a
pointer to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns a pointer to an ipt_entry structure containing information about the first rule of the chain.
See below for an explanation of this structure.

11.8. iptc_next_rule

Name: iptc_next_rule

Usage: Get the next rule in the given chain.

Prototype: const struct ipt_entry *iptc_next_rule(const struct ipt_entry *prev, iptc_handle_t *handle)

Description: This function returns a pointer to the next rule in the given chain name; NULL means the end of
the chain.

Parameters: prev is a pointer to a structure of type ipt_entry that must be obtained first by a previous call to
the function iptc_first_rule. In order to get the second and subsequent rules you have to pass a pointer to the
structure containing the information about the previous rule of the chain. handle is a pointer to a structure of
type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns a pointer to an ipt_entry structure containing information about the next rule of the chain.
See below for an explanation of this structure.

11.9. iptc_get_target

Name: iptc_get_target

Usage: Get a pointer to the target name of this entry.

Prototype: const char *iptc_get_target(const struct ipt_entry *e, iptc_handle_t *handle)

Description: This function gets the target of the given rule. If it is an extended target, the name of that target
is returned. If it is a jump to another chain, the name of that chain is returned. If it is a verdict (eg. DROP),
that name is returned. If it has no target (an accounting−style rule), then the empty string is returned. Note

Querying libiptc HOWTO

11.7. iptc_first_rule 16

that this function should be used instead of using the value of the verdict field of the ipt_entry structure
directly, as it offers the above further interpretations of the standard verdict.

Parameters: e is a pointer to a structure of type ipt_entry that must be obtained first by a previous call to the
function iptc_first_rule or the function iptc_next_rule. handle is a pointer to a structure of type
iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns a char pointer to the target name. See Description above for more information.

Now it is time to explain the ipt_entry structure; these pieces of code are taken from iptables package sources:

/* Internet address. */
struct in_addr {
 __u32 s_addr;
};

/* Yes, Virginia, you have to zero the padding. */
struct ipt_ip {
 /* Source and destination IP addr */
 struct in_addr src, dst;
 /* Mask for src and dest IP addr */
 struct in_addr smsk, dmsk;
 char iniface[IFNAMSIZ], outiface[IFNAMSIZ];
 unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ];

 /* Protocol, 0 = ANY */
 u_int16_t proto;

 /* Flags word */
 u_int8_t flags;
 /* Inverse flags */
 u_int8_t invflags;
};

struct ipt_counters
{
 u_int64_t pcnt, bcnt; /* Packet and byte counters */
};

/* This structure defines each of the firewall rules. Consists of 3
 parts which are 1) general IP header stuff 2) match specific
 stuff 3) the target to perform if the rule matches */
struct ipt_entry
{
 struct ipt_ip ip;

 /* Mark with fields that we care about. */
 unsigned int nfcache;

 /* Size of ipt_entry + matches */
 u_int16_t target_offset;
 /* Size of ipt_entry + matches + target */
 u_int16_t next_offset;

 /* Back pointer */
 unsigned int comefrom;

 /* Packet and byte counters. */
 struct ipt_counters counters;

Querying libiptc HOWTO

11.7. iptc_first_rule 17

 /* The matches (if any), then the target. */
 unsigned char elems[0];
};

An ipt_entry structure contains:

An ipt_ip structure containing (for the rule) the source address and netmask (ip.src.s_addr,
ip.smsk.s_addr), the destination address and netmask (ip.dst.s_addr, ip.dmsk.s_addr), the protocol
(ip.proto), a flags field (invflags) to check for inverse (!) selections (eg. ! 192.168.2.0/24, ! eth0, !
tcp, etc), the input interface (iniface), the output interface (outiface), the input (iniface_mask) and
output (outiface_mask) interface masks and the flags field to check for fragmented packets.

•

An ipt_counters structure containing the packet (pcnt) and byte (bcnt) counter of the rule. This
information is important for bandwidth measurement.

•

target_offset that is used to get the target information of the rule. •
Unknown fields: nfcache, comefrom, elems, next_offset. If someone can give me a feedback about
these fields I would be grateful.

•

A simple way to work with all this information is to borrow some functions from iptables−save.c by
Paul Russell and Harald Welte.

Here is another sample program Program #2 written with a lot of help from Russell−Welte:

/*
 * How to use libiptc− program #2
 * /usr/local/src/p1.c
 */

#include <getopt.h>
#include <sys/errno.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <dlfcn.h>
#include <time.h>
#include "libiptc/libiptc.h"
#include "iptables.h"

/* Here begins some of the code taken from iptables−save.c **************** */
#define IP_PARTS_NATIVE(n) \
(unsigned int)((n)>>24)&0xFF, \
(unsigned int)((n)>>16)&0xFF, \
(unsigned int)((n)>>8)&0xFF, \
(unsigned int)((n)&0xFF)

#define IP_PARTS(n) IP_PARTS_NATIVE(ntohl(n))

/* This assumes that mask is contiguous, and byte−bounded. */
static void
print_iface(char letter, const char *iface, const unsigned char *mask,
 int invert)
{
 unsigned int i;

 if (mask[0] == 0)
 return;

Querying libiptc HOWTO

11.7. iptc_first_rule 18

 printf("−%c %s", letter, invert ? "! " : "");

 for (i = 0; i < IFNAMSIZ; i++) {
 if (mask[i] != 0) {
 if (iface[i] != '\0')
 printf("%c", iface[i]);
 } else {
 /* we can access iface[i−1] here, because
 * a few lines above we make sure that mask[0] != 0 */
 if (iface[i−1] != '\0')
 printf("+");
 break;
 }
 }

 printf(" ");
}

/* These are hardcoded backups in iptables.c, so they are safe */
struct pprot {
 char *name;
 u_int8_t num;
};

/* FIXME: why don't we use /etc/protocols ? */
static const struct pprot chain_protos[] = {
 { "tcp", IPPROTO_TCP },
 { "udp", IPPROTO_UDP },
 { "icmp", IPPROTO_ICMP },
 { "esp", IPPROTO_ESP },
 { "ah", IPPROTO_AH },
};

static void print_proto(u_int16_t proto, int invert)
{
 if (proto) {
 unsigned int i;
 const char *invertstr = invert ? "! " : "";

 for (i = 0; i < sizeof(chain_protos)/sizeof(struct pprot); i++)
 if (chain_protos[i].num == proto) {
 printf("−p %s%s ",
 invertstr, chain_protos[i].name);
 return;
 }

 printf("−p %s%u ", invertstr, proto);
 }
}

static int print_match(const struct ipt_entry_match *e,
 const struct ipt_ip *ip)
{
 struct iptables_match *match
 = find_match(e−>u.user.name, TRY_LOAD);

 if (match) {
 printf("−m %s ", e−>u.user.name);

 /* some matches don't provide a save function */
 if (match−>save)

Querying libiptc HOWTO

11.7. iptc_first_rule 19

 match−>save(ip, e);
 } else {
 if (e−>u.match_size) {
 fprintf(stderr,
 "Can't find library for match `%s'\n",
 e−>u.user.name);
 exit(1);
 }
 }
 return 0;
}

/* print a given ip including mask if neccessary */
static void print_ip(char *prefix, u_int32_t ip, u_int32_t mask, int invert)
{
 if (!mask && !ip)
 return;

 printf("%s %s%u.%u.%u.%u",
 prefix,
 invert ? "! " : "",
 IP_PARTS(ip));

 if (mask != 0xffffffff)
 printf("/%u.%u.%u.%u ", IP_PARTS(mask));
 else
 printf(" ");
}

/* We want this to be readable, so only print out neccessary fields.
 * Because that's the kind of world I want to live in. */
static void print_rule(const struct ipt_entry *e,
 iptc_handle_t *h, const char *chain, int counters)
{
 struct ipt_entry_target *t;
 const char *target_name;

 /* print counters */
 if (counters)
 printf("[%llu:%llu] ", e−>counters.pcnt, e−>counters.bcnt);

 /* print chain name */
 printf("−A %s ", chain);

 /* Print IP part. */
 print_ip("−s", e−>ip.src.s_addr,e−>ip.smsk.s_addr,
 e−>ip.invflags & IPT_INV_SRCIP);

 print_ip("−d", e−>ip.dst.s_addr, e−>ip.dmsk.s_addr,
 e−>ip.invflags & IPT_INV_DSTIP);

 print_iface('i', e−>ip.iniface, e−>ip.iniface_mask,
 e−>ip.invflags & IPT_INV_VIA_IN);

 print_iface('o', e−>ip.outiface, e−>ip.outiface_mask,
 e−>ip.invflags & IPT_INV_VIA_OUT);

 print_proto(e−>ip.proto, e−>ip.invflags & IPT_INV_PROTO);

 if (e−>ip.flags & IPT_F_FRAG)
 printf("%s−f ",
 e−>ip.invflags & IPT_INV_FRAG ? "! " : "");

Querying libiptc HOWTO

11.7. iptc_first_rule 20

 /* Print matchinfo part */
 if (e−>target_offset) {
 IPT_MATCH_ITERATE(e, print_match, &e−>ip);
 }

 /* Print target name */
 target_name = iptc_get_target(e, h);
 if (target_name && (*target_name != '\0'))
 printf("−j %s ", target_name);

 /* Print targinfo part */
 t = ipt_get_target((struct ipt_entry *)e);
 if (t−>u.user.name[0]) {
 struct iptables_target *target
 = find_target(t−>u.user.name, TRY_LOAD);

 if (!target) {
 fprintf(stderr, "Can't find library for target `%s'\n",
 t−>u.user.name);
 exit(1);
 }

 if (target−>save)
 target−>save(&e−>ip, t);
 else {
 /* If the target size is greater than ipt_entry_target
 * there is something to be saved, we just don't know
 * how to print it */
 if (t−>u.target_size !=
 sizeof(struct ipt_entry_target)) {
 fprintf(stderr, "Target `%s' is missing "
 "save function\n",
 t−>u.user.name);
 exit(1);
 }
 }
 }
 printf("\n");
}
/* Here ends some of the code taken from iptables−save.c ****************** */

int main(void)
{
 iptc_handle_t h;
 const struct ipt_entry *e;
 const char *chain = NULL;
 const char *tablename = "filter";
 const int counters = 1;

 program_name = "p2";
 program_version = NETFILTER_VERSION;

 /* initialize */
 h = iptc_init(tablename);
 if (!h) {
 printf("Error initializing: %s\n", iptc_strerror(errno));
 exit(errno);
 }

 /* print chains and their rules */
 for (chain = iptc_first_chain(&h); chain; chain = iptc_next_chain(&h)) {

Querying libiptc HOWTO

11.7. iptc_first_rule 21

 printf("%s\n", chain);
 for (e = iptc_first_rule(chain, &h); e; e = iptc_next_rule(e, &h)) {
 print_rule(e, &h, chain, counters);
 }
 }

 exit(0);

} /* main */

The function print_rule borrowed from iptables−save.c prints the information about a rule into a
readable form using:

print_ip to print the addresses, •
print_iface to print the interfaces, •
print_proto to print the protocols, •
iptc_get_target to get and print the targets (using save). •

In main we iterate through each chain and for each one we iterate through each rule printing it.

The arguments of print_rule are:

e = pointer to an ipt_entry structure containing information about the rule. •
h = pointer to an iptc_handle_t structure returned by iptc_init. •
chain = name of the chain. •
counters = 0: do not print counters; 1: print them. •

OK, compile and run program p2:

bash# ./ipt−cc p2
bash# ./p2

You will get:

INPUT
FORWARD
OUTPUT
chain_1
chain_2

Now modify the environment using iptables to add some rules:

bash# iptables −A INPUT −p tcp −i eth0 −s ! 192.168.1.1 −−dport 20 −j ACCEPT
bash# iptables −A chain_1 −p udp −o eth1 −s 192.168.2.0/24 −−sport 33 −j DROP

Now if you run again p2 you will get:

INPUT
[0:0] −A INPUT −s ! 192.168.1.1 −i eth0 −p tcp −m tcp −−dport 20 −j ACCEPT
FORWARD
OUTPUT
chain_1
[0:0] −A chain_1 −s 192.168.2.0/255.255.255.0 −o eth1 −p udp −m udp −−sport 33 −j DROP
chain_2

Querying libiptc HOWTO

11.7. iptc_first_rule 22

We have now rules printed for INPUT and chain_1 chains. The numbers in the brackets at left are packet and
byte counters respectively.

11.10. iptc_get_policy

Name: iptc_get_policy

Usage: Get the policy of a given built−in chain.

Prototype: const char *iptc_get_policy(const char *chain, struct ipt_counters *counter, iptc_handle_t
*handle)

Description: This function gets the policy of a built−in chain, and fills in the counters argument with the hit
statistics on that policy.

Parameters: You have to pass as arguments the name of the built−in chain you want to get the policy to, a
pointer to an ipt_counters structure to be filled by the function and the iptc_handle_t structure identifying the
table we are working to. The ipt_counters structure was explained in previous section; do not forget that
iptc_handle_t must be obtained by a previous call to the function iptc_init.

Returns: Returns a char pointer to the policy name.

Using pieces of programs 1 and 2 we can write program #3:

/*
 * How to use libiptc− program #3
 * /usr/local/src/p3.c
 */

#include <getopt.h>
#include <sys/errno.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <dlfcn.h>
#include <time.h>
#include "libiptc/libiptc.h"
#include "iptables.h"

int main(void)
{
 iptc_handle_t h;
 const char *chain = NULL;
 const char *policy = NULL;
 const char *tablename = "filter";
 struct ipt_counters counters;

 program_name = "p3";
 program_version = NETFILTER_VERSION;

 /* initialize */
 h = iptc_init(tablename);
 if (!h) {

Querying libiptc HOWTO

11.10. iptc_get_policy 23

 printf("Error initializing: %s\n", iptc_strerror(errno));
 exit(errno);
 }

 /* print built−in chains, their policies and counters */
 printf("BUILT−IN POLICY PKTS−BYTES\n");
 printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n");
 for (chain = iptc_first_chain(&h); chain; chain = iptc_next_chain(&h)) {
 if (!iptc_builtin(chain, h))
 continue;
 if ((policy = iptc_get_policy(chain, &counters, &h)))
 printf("%−10s %−10s [%llu:%llu]\n",
 chain, policy, counters.pcnt, counters.bcnt);
 }

 exit(0);

} /* main */

OK, compile and run program p3:

bash# ./ipt−cc p3
bash# ./p3

You will get something like this:

BUILT−IN POLICY PKTS−BYTES
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
INPUT ACCEPT [0:0]
FORWARD ACCEPT [0:0]
OUTPUT ACCEPT [0:0]

11.11. iptc_read_counter

Name: iptc_read_counter

Usage: Read counters of a rule in a chain.

Prototype: struct ipt_counters *iptc_read_counter(const ipt_chainlabel chain, unsigned int rulenum,
iptc_handle_t *handle);

Description: This function read and returns packet and byte counters of the entry rule in chain
chain positioned at rulenum. Counters are returned in a pointer to a type structure ipt_counters. Rule numbers
start at 1 for the first rule.

Parameters: chain is a char pointer to the name of the chain to be readed; rulenum is an integer value
defined the position in the chain of rules of the rule which counters will be read. handle is a pointer to a
structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns a pointer to an ipt_counters structure containing the byte and packet counters readed.

Querying libiptc HOWTO

11.11. iptc_read_counter 24

12. Functions to modify firewalling rules and
statistics
For those of you who are a little brave, libiptc has a group of functions to directly modify the firewalling rules
and statistics (use of iptables is really the safest way).

These functions are not covered by this HOWTO and I will limit myself to presenting improved information
taken from libiptc.h and the Linux netfilter Hacking HOWTO by Rusty Russell.

12.1. iptc_commit

Name: iptc_commit

Usage: Makes the actual changes.

Prototype: int iptc_commit(iptc_handle_t *handle)

Description: The tables that you change are not written back until the iptc_commit() function is called. This
means it is possible for two library users operating on the same chain to race each other; locking would be
required to prevent this, and it is not currently done. There is no race with counters, however; counters are
added back in to the kernel in such a way that counter increments between the reading and writing of the
table still show up in the new table. To protect the status of the system you must commit your changes.

Parameters: handle is a pointer to a structure of type iptc_handle_t that was obtained by a previous call to
iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.2. iptc_insert_entry

Name: iptc_insert_entry

Usage: Insert a new rule in a chain.

Prototype: int iptc_insert_entry(const ipt_chainlabel chain, const struct ipt_entry *e, unsigned int rulenum,
iptc_handle_t *handle)

Description: This function insert a rule defined in structure type ipt_entry in chain chain into position
defined by integer value rulenum. Rule numbers start at 1 for the first rule.

Parameters: chain is a char pointer to the name of the chain to be modified; e is a pointer to a structure of
type ipt_entry that contains information about the rule to be inserted. The programmer must fill the fields of
this structure with values required to define his or her rule before passing the pointer as parameter to the
function. rulenum is an integer value defined the position in the chain of rules where the new rule will be

12. Functions to modify firewalling rules and statistics 25

http://netfilter.samba.org/documentation/HOWTO/

inserted. Rule numbers start at 1 for the first rule. handle is a pointer to a structure of type iptc_handle_t that
was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.3. iptc_replace_entry

Name: iptc_replace_entry

Usage: Replace an old rule in a chain with a new one.

Prototype: int iptc_replace_entry(const ipt_chainlabel chain, const struct ipt_entry *e, unsigned int rulenum,
iptc_handle_t *handle)

Description: This function replace the entry rule in chain chain positioned at rulenum with the rule defined
in structure type ipt_entry. Rule numbers start at 1 for the first rule.

Parameters: chain is a char pointer to the name of the chain to be modified; e is a pointer to a structure of
type ipt_entry that contains information about the rule to be inserted. The programmer must fill the fields of
this structure with values required to define his or her rule before passing the pointer as parameter to the
function. rulenum is an integer value defined the position in the chain of rules where the old rule will be
replaced by the new one. Rule numbers start at 1 for the first rule. handle is a pointer to a structure of type
iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.4. iptc_append_entry

Name: iptc_append_entry

Usage: Append a new rule in a chain.

Prototype: int iptc_append_entry(const ipt_chainlabel chain, const struct ipt_entry *e, iptc_handle_t *handle)

Description: This function append a rule defined in structure type ipt_entry in chain chain (equivalent to
insert with rulenum = length of chain).

Parameters: chain is a char pointer to the name of the chain to be modified; e is a pointer to a structure of
type ipt_entry that contains information about the rule to be appended. The programmer must fill the fields of
this structure with values required to define his or her rule before passing the pointer as parameter to the
function. handle is a pointer to a structure of type iptc_handle_t that was obtained by a previous call to
iptc_init.

Querying libiptc HOWTO

12.3. iptc_replace_entry 26

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.5. iptc_delete_num_entry

Name: iptc_delete_num_entry

Usage: Delete a rule in a chain.

Prototype: int iptc_delete_num_entry(const ipt_chainlabel chain, unsigned int rulenum, iptc_handle_t
*handle)

Description: This function delete the entry rule in chain chain positioned at rulenum. Rule numbers start at 1
for the first rule.

Parameters: chain is a char pointer to the name of the chain to be modified; rulenum is an integer value
defined the position in the chain of rules where the rule will be deleted. handle is a pointer to a structure of
type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.6. iptc_flush_entries

Name: iptc_flush_entries

Usage: Empty a chain.

Prototype: int iptc_flush_entries(const ipt_chainlabel chain, iptc_handle_t *handle)

Description: This function flushes the rule entries in the given chain (ie. empties chain).

Parameters: chain is a char pointer to the name of the chain to be flushed; handle is a pointer to a structure
of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.7. iptc_zero_entries

Name: iptc_zero_entries

Usage: Zeroes the chain counters.

Querying libiptc HOWTO

12.5. iptc_delete_num_entry 27

Prototype: int iptc_zero_entries(const ipt_chainlabel chain, iptc_handle_t *handle)

Description: This function zeroes the counters in the given chain.

Parameters: chain is a char pointer to the name of the chain which counters will be zero; handle is a pointer
to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.8. iptc_create_chain

Name: iptc_create_chain

Usage: Create a new chain.

Prototype: int iptc_create_chain(const ipt_chainlabel chain, iptc_handle_t *handle)

Description: This function create a new chain in the table.

Parameters: chain is a char pointer to the name of the chain to be created; handle is a pointer to a structure
of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.9. iptc_delete_chain

Name: iptc_delete_chain

Usage: Delete a chain.

Prototype: int iptc_delete_chain(const ipt_chainlabel chain, iptc_handle_t *handle)

Description: This function delete the chain identified by the char pointer chain in the table.

Parameters: chain is a char pointer to the name of the chain to be deleted; handle is a pointer to a structure
of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

Querying libiptc HOWTO

12.8. iptc_create_chain 28

12.10. iptc_rename_chain

Name: iptc_rename_chain

Usage: Rename a chain.

Prototype: int iptc_rename_chain(const ipt_chainlabel oldname, const ipt_chainlabel newname,
iptc_handle_t *handle)

Description: This function rename the chain identified by the char pointer oldname to a new name
newname in the table.

Parameters: oldname is a char pointer to the name of the chain to be renamed, newname is the new name;
handle is a pointer to a structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.11. iptc_set_policy

Name: iptc_set_policy

Usage: Set the policy in a built−in chain.

Prototype: int iptc_set_policy(const ipt_chainlabel chain, const ipt_chainlabel policy, struct ipt_counters
*counters, iptc_handle_t *handle)

Description: This function set the policy in chain chain to the value represented by the char pointer policy. If
you want to set at the same time the counters of the chain, fill those values in a structure of type
ipt_counters and pass a pointer to it as parameter counters. Be careful: the chain must be a built−in chain.

Parameters: chain is a char pointer to the name of the chain to be modified; policy is a char pointer to the
name of the policy to be set. counters is a pointer to an ipt_counters structure to be used to set the counters of
the chain. handle is a pointer to a structure of type iptc_handle_t that was obtained by a previous call to
iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.12. iptc_zero_counter

Name: iptc_zero_counter

Usage: Zero counters of a rule in a chain.

Querying libiptc HOWTO

12.10. iptc_rename_chain 29

Prototype: int iptc_zero_counter(const ipt_chainlabel chain, unsigned int rulenum, iptc_handle_t *handle)

Description: This function zero packet and byte counters of the entry rule in chain chain positioned at
rulenum. Rule numbers start at 1 for the first rule.

Parameters: chain is a char pointer to the name of the chain to be modified; rulenum is an integer value
defined the position in the chain of rules of the rule which counters will be zero. handle is a pointer to a
structure of type iptc_handle_t that was obtained by a previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

12.13. iptc_set_counter

Name: iptc_set_counter

Usage: Set counters of a rule in a chain.

Prototype: int iptc_set_counter(const ipt_chainlabel chain, unsigned int rulenum, struct ipt_counters
*counters, iptc_handle_t *handle)

Description: This function set packet and byte counters of the entry rule in chain chain positioned at
rulenum with values passed in a type structure ipt_counters. Rule numbers start at 1 for the first rule.

Parameters: chain is a char pointer to the name of the chain to be modified; rulenum is an integer value
defined the position in the chain of rules of the rule which counters will be set. counters is a pointer to an
ipt_counters structure to be used to set the counters of the rule; the programmer must fill the fields of this
structure with values to be set. handle is a pointer to a structure of type iptc_handle_t that was obtained by a
previous call to iptc_init.

Returns: Returns integer value 1 (true) if successful; returns integer value 0 (false) if fails. In this case
errno is set to the error number generated. Use iptc_strerror to get a meaningful information about the
problem. If errno == 0, it means there was a version error (ie. upgrade libiptc).

Querying libiptc HOWTO

12.13. iptc_set_counter 30

13. Bandwidth meter
In this chapter I am going to develop a simple bandwidth meter using the following functions from libiptc:

To initialize the system: iptc_handle_t iptc_init(const char *tablename). •
To catch from errors: const char *iptc_strerror(int err). •
To iterate through the chains of the table: const char *iptc_first_chain(iptc_handle_t *handle) and
const char *iptc_next_chain(iptc_handle_t *handle).

•

To read packet and byte counters for a specific rule: struct ipt_counters *iptc_read_counter(const
ipt_chainlabel chain, unsigned int rulenum, iptc_handle_t *handle).

•

Also the function gettimeofday will be used to measure elapsed time and the function getopt to get options
from the command line.

I don't know really if the term bandwidth meter is well used here. I interpret bandwidth as a reference to a
flow capacity; perhaps a better term could be flow meter.

Here is the bandwidth meter bw.c. It's well commented to be easy followed by everyone:

/*
 * How to use libiptc− program #4
 * /usr/local/src/bw.c
 * By Leonardo Balliache − 04.09.2002
 * e−mail: leonardo@opalsoft.net
 * −−WELL COMMENTED−− to be easy followed by everyone.
 */

/* include files required */
#include <getopt.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <dlfcn.h>
#include <time.h>
#include <unistd.h>
#include "libiptc/libiptc.h"
#include "iptables.h"

/* colors to differentiate chains measures */
#define RED "\033[41m\033[37m"
#define GREEN "\033[42m\033[30m"
#define ORANGE "\033[43m\033[30m"
#define BLUE "\033[44m\033[37m"
#define MAGENTA "\033[45m\033[37m"
#define CYAN "\033[46m\033[30m"
#define WHITE "\033[47m\033[30m"
#define BLACK "\033[40m\033[37m"
#define RESET "\033[00m"

/* maximum number of chains to be processed */
#define MAXUSERCHAINS 7

/* time between measures in seconds; adjust as you like */

13. Bandwidth meter 31

#define SLEEPTIME 1

/* structure to count bytes per chain */
struct bwcnt {
 int start; /* the chain was initialized */
 u_int64_t icnt; /* bytes through; previous measure */
 u_int64_t ocnt; /* bytes through; current measure */
 double bw; /* bandwitdh (flow) on this chain */
};

/* function to calculate differences of time in seconds.
 * micro−seconds precision.
 */
double delta(struct timeval a, struct timeval b)
{
 if (a.tv_usec & b.tv_usec) {
 a.tv_sec−−;
 a.tv_usec += 1000000;
 }
 return a.tv_sec−b.tv_sec + (a.tv_usec−b.tv_usec)/1000000.0;
}

/* main function */
int main(int argc, char *argv[])
{
 int i, j, ok;
 double totbw;
 iptc_handle_t h;
 int c, act_bw = 0;
 const char *chain = NULL;
 const char *tablename = "filter";
 struct timeval ti, to;
 struct bwcnt bw[MAXUSERCHAINS];
 struct ipt_counters *counters;
 char *col[9] = { RED,GREEN,ORANGE,BLUE,MAGENTA,CYAN,WHITE,BLACK,RESET };

 program_name = "bw";
 program_version = NETFILTER_VERSION;

 /* check options
 * we have 2 options:
 * −c = display current flow (each SLEEPTIME).
 * −a = display average flow (from start); default option.
 */
 while ((c = getopt (argc, argv, "ac")) != −1)
 switch (c) {
 case 'a':
 act_bw = 0;
 break;
 case 'c':
 act_bw = 1;
 break;
 case '?':
 if (isprint(optopt))
 fprintf (stderr, "Unknown option `−%c'.\n", optopt);
 else
 fprintf (stderr,"Unknown option character `\\x%x'.\n",optopt);
 exit(1);
 default:
 abort();
 }

Querying libiptc HOWTO

13. Bandwidth meter 32

 /* initialize array of chains */
 memset(&bw, 0, MAXUSERCHAINS * sizeof(struct bwcnt));

 /* get time to start meter on variable ti */
 gettimeofday(&ti, NULL);

 /* fire meter loop */
 if (act_bw)
 printf("Displaying current flow values ...\n");
 else
 printf("Displaying average flow values ...\n");

 /* forever loop; abort the program with ^C */
 while (1) {
 /* you have to initialize for each measure to be done */
 if (!(h = iptc_init(tablename))) {
 printf("Error initializing: %s\n", iptc_strerror(errno));
 exit(errno);
 }
 ok = 0; /* we start a new loop */
 gettimeofday(&to, NULL); /* have a time shoot */

 /* iterate through each chain of the table */
 for (chain = iptc_first_chain(&h), i = 0;
 chain;
 chain = iptc_next_chain(&h)) {
 if (iptc_builtin(chain, h))
 continue; /* if it is a built−in chain, ignore it */

 /* ok, read the counters of this chain */
 if (!(counters = iptc_read_counter(chain, 0, &h))) {
 printf("Error reading %s: %s\n", chain, iptc_strerror(errno));
 exit(errno);
 }

 /* check that we do not have more chains than we can process */
 if (i >= MAXUSERCHAINS) {
 printf("Maximum of %d user chains exceeded!!\n", MAXUSERCHAINS);
 exit(1);
 }

 /* this chain counter has not been initialized; initialize it */
 if (bw[i].start == 0) {
 bw[i].icnt = counters−>bcnt;
 bw[i].start = 1;
 }

 /* this chain has a previous measure; take the current one */
 else {
 bw[i].ocnt = counters−>bcnt;
 if (bw[i].ocnt == bw[i].icnt) /* no new bytes flowing? */
 bw[i].bw = 0; /* flow is zero */
 else
 /* flow in this chain is:
 * current bytes count (bw[i].octn) *minus*
 * previous bytes count (bw[i].icnt) *divided by*
 * 128.0 to convert bytes to kbits *and divided by*
 * difference in times in seconds *to get*
 * flow in kbits/sec that is what we want.
 */
 bw[i].bw = (bw[i].ocnt − bw[i].icnt) / (128.0 * delta(to, ti));

Querying libiptc HOWTO

13. Bandwidth meter 33

 /* do you want current flow of this chain? initialize previous
 * bytes count to current bytes count; we get the flow in last
 * SLEEPTIME elapsed time.
 */
 if (act_bw)
 bw[i].icnt = bw[i].ocnt;
 ok = 1; /* ok, we have some measure to show */
 }
 ++i; /* next chain, please */
 }

 /* we iterate and i == 0; we do not have user chains at all */
 if (i == 0) {
 printf("No user chains to meter!!\n");
 exit(1);
 }

 /* do you want to measure current flow? initialize previous time
 * to actual time; we get the time elapsed in last SLEEPTIME.
 */
 if (act_bw)
 ti = to;

 /* do we have something to show? ok, display it */
 if (ok) {
 totbw = 0;
 for (j = 0; j < i; ++j) {
 totbw = totbw + bw[j].bw; /* calculate total flow */
 }
 printf("%s%6.1fk:%s ", col[7], totbw, col[8]); /* display total */
 for (j = 0; j < i; ++j) { /* display flow of each chain in color */
 printf("%s%6.1fk%s ", col[j], bw[j].bw, col[8]);
 }
 printf("\n");
 }
 sleep(SLEEPTIME); /* rest a little; you go too fast */
 } /* give us enough time in order to let some bytes flow */

 exit(0); /* bye, we have our measures!! */

} /* main */

Write your program and compile as before:

bash# ./ipt−cc bw

Before using the meter we need to set our environment.

First, we have to have at least 2 PCs connected in a network. This is our diagram configuration:

+−−−−−−−−+ eth0 eth0 +−−−−−−−−+
| PC #1 +−−−−−−−−−−−−−−−−−+ PC #2 |
+−−−−−−−−+ +−−−−−−−−+
eth0=192.168.1.1 eth0=192.168.1.2

Second, we need to install a very nice and useful package called netcat written by Hobbit. This
excellent package will help us to inject and receive a flow of bytes between 2 NICs. If you don't have the
package in your system, download it from http://rr.sans.org/audit/netcat.php.

Querying libiptc HOWTO

13. Bandwidth meter 34

http://rr.sans.org/audit/netcat.php

The version that I use is 1.10−277. To install it follow these instructions:

bash# cp netcat−1.10.tar.gz /usr/local/src
bash# tar xzvf netcat−1.10.tar.gz
bash# cd netcat−1.10

My version requires to make a patch first; check yours if you have a file with a .dif extension and apply it too:

bash# patch −p0 −i netcat−1.10.dif

Next compile the package using make:

bash# make linux

Copy the binary nc to your user bin directory:

bash# cp nc /usr/bin

And also to the second PC in your network:

bash# scp nc 192.168.1.2:/usr/bin

We are going to use netcat to "listen" to a flow of bytes from PC #2 and to "talk" from PC #1. Using tty1 to
tty4 consoles on PC #2 let's start netcat to listen from this PC. Go to PC #2 and in tty1 type:

bash# nc −n −v −l −s 192.168.1.2 −p 1001 >/dev/null

netcat must respond with:

listening on [192.168.1.2] 1001 ...

This command started netcat to listen from address 192.168.1.2 using port number 1001. Arguments are:
−n = use numeric address identification; −v = verbose; −l = listen. All the flow that netcat receives in
192.168.1.2:1001 will be redirected to the "black hole" in /dev/null.

Repeat the command in tty2, tty3 and tty4; change to tty2 using ALT−F2 and after logging in write:

bash# nc −n −v −l −s 192.168.1.2 −p 1002 >/dev/null

Now we are "listening" to the same address but port number 1002.

Go on now with tty3:

bash# nc −n −v −l −s 192.168.1.2 −p 1003 >/dev/null

And tty4:

bash# nc −n −v −l −s 192.168.1.2 −p 1004 >/dev/null

Now we are listening in PC #2, address 192.168.1.2 in ports 1001, 1002, 1003 and 1004.

Querying libiptc HOWTO

13. Bandwidth meter 35

Come back to PC #1 and let's set the environment to allow iptables to help us to complete our tests:

On PC #1, type the into tty1 as follows:

bash# iptables −F
bash# iptables −X
bash# iptables −N chn_1
bash# iptables −N chn_2
bash# iptables −N chn_3
bash# iptables −N chn_4
bash# iptables −A chn_1 −j ACCEPT
bash# iptables −A chn_2 −j ACCEPT
bash# iptables −A chn_3 −j ACCEPT
bash# iptables −A chn_4 −j ACCEPT
bash# iptables −A OUTPUT −o eth0 −p tcp −−dport 1001 −j chn_1
bash# iptables −A OUTPUT −o eth0 −p tcp −−dport 1002 −j chn_2
bash# iptables −A OUTPUT −o eth0 −p tcp −−dport 1003 −j chn_3
bash# iptables −A OUTPUT −o eth0 −p tcp −−dport 1004 −j chn_4

These commands will:

Flush all chains in table filter. •
Delete all user chains in table filter. •
Create user chains chn_1, chn_2, chn_3 and chn_4. •
Establish a target ACCEPT in each user chain. •
Create 4 rules in chain OUTPUT that matches port numbers 1001 to 1004 and target it to user chains
chn_1 to chn_4.

•

Now start the bw meter using current values:

bash# ./bw −c

It must respond with:

Displaying current flow values ...
 0.0k: 0.0k 0.0k 0.0k 0.0k
 0.0k: 0.0k 0.0k 0.0k 0.0k
 0.0k: 0.0k 0.0k 0.0k 0.0k
 0.0k: 0.0k 0.0k 0.0k 0.0k

It informs that measures are current flows. Every line is a measure taken each SLEEPTIME lapse (1 second in
our program). First column (in black) are total flow, next columns (in red, green, orange and blue) are flows
in chains chn_1, chn_2, chn_3 and chn_4 respectively. Of course we do not have any flow now. However let
bw run and continue reading.

Let's start now one of our byte flows; go to tty2 in PC #1 with ALT−F2 and after logging in, type:

bash# yes 000000000000000000 | nc −n −v −s 192.168.1.1 −p 2001 192.168.1.2 1001

netcat responds with:

(UNKNOWN) [192.168.1.2] 1000 (?) open

Querying libiptc HOWTO

13. Bandwidth meter 36

Now we have a flow of bytes from PC #1 to PC #2. yes generates a constant flow of zeroes; this flow is piped
to netcat through address 192.168.1.1, port 2001 and sends it to PC #2, address 192.168.1.2, port
1001 (where PC #2 is listening).

Check now the display of bw in tty1:

7653.2k: 7653.2k 0.0k 0.0k 0.0k
7829.5k: 7829.5k 0.0k 0.0k 0.0k
7786.7k: 7786.7k 0.0k 0.0k 0.0k
7892.1k: 7982.1k 0.0k 0.0k 0.0k

Your mileage can vary depending of the physical characteristics of your system. In mine I have a flow of
aproximately 7700 kbits/sec in the first chain chn_1 which corresponds to port number 1001 in PC #2.

Let's start now the second bytes flow; go to tty3 in PC #1 with ALT−F3 and after logging in, type:

bash# yes 000000000000000000 | nc −n −v −s 192.168.1.1 −p 2002 192.168.1.2 1002

netcat responds with:

(UNKNOWN) [192.168.1.2] 1002 (?) open

Now we have 2 flows of bytes from PC #1 to PC #2; one from 192.168.1.1:2001 to 192.168.1.2:1001 and
another from 192.168.1.1:2002 to 192.168.1.2:1002.

Now check the display of bw in tty1:

7819.6k: 4144.2k 3675.4k 0.0k 0.0k
8090.5k: 3923.9k 4166.6k 0.0k 0.0k
7794.7k: 3920.8k 3873.9k 0.0k 0.0k
7988.3k: 3754.6k 4233.7k 0.0k 0.0k

Now we have 2 flows; each of them is more or less 50% of the total flow going out of the computer. The
Linux kernel tries to balance the bandwidth available between the 2 channels of output.

To continue, start the 2 aditional flows through channels 192.168.1.1:2003−192.168.1.2:1003 and
192.168.1.1:2004−192.168.1.2:1004.

In tty4 type:

bash# yes 000000000000000000 | nc −n −v −s 192.168.1.1 −p 2003 192.168.1.2 1003

In tty5 type:

bash# yes 000000000000000000 | nc −n −v −s 192.168.1.1 −p 2004 192.168.1.2 1004

The display of bw in tty1 will be something like:

8120.6k: 1705.3k 2354.9k 1898.6k 2161.8k
7765.3k: 1634.2k 2560.2k 2011.4k 1559.5k
7911.9k: 1699.8k 2090.3k 1768.0k 2353.8k

Querying libiptc HOWTO

13. Bandwidth meter 37

8309.4k: 1734.5k 1999.7k 1999.9k 2575.3k

Total bandwidth is distributed between the 4 channels of flow.

Querying libiptc HOWTO

13. Bandwidth meter 38

14. Controlling flows
In this chapter we are going to try to control the flows using the Linux kernel queue disciplines. Perhaps,
depending on how you compiled your kernel, you will again need to run make menuconfig, re−configure
your options, re−compile and re−install your kernel.

This chapter is not and does not pretend to be a tutorial about the implementation of QoS (Quality of
Service) in Linux. If you don't have previous experience with QoS it's better to read some references at the
end of this document to acquire the concepts required for QoS implementation.

With this advice, I'm not going to explain in detail each of the commands needed to control flows in Linux
because it is not the goal of this HOWTO. However, the implementation of some of these techniques will
serve us to show the bandwidth meter (based on libiptc) behaviour.

First check if you have QoS implementation options implemented in your kernel. Run make menuconfig,
follow the menu to Networking options and look for last menu of this option QoS and/or fair queueing. Here
use (or check if they are active) these options:

 [*] QoS and/or fair queueing
 <M> CBQ packet scheduler
 <M> CSZ packet scheduler
 [*] ATM pseudo−scheduler
 <M> The simplest PRIO pseudoscheduler
 <M> RED queue
 <M> SFQ queue
 <M> TEQL queue
 <M> TBF queue
 <M> GRED queue
 <M> Diffserv field marker
 <M> Ingress Qdisc
 [*] QoS support
 [*] Rate estimator
 [*] Packet classifier API
 <M> TC index classifier
 <M> Routing table based classifier
 <M> Firewall based classifier
 <M> U32 classifier
 <M> Special RSVP classifier
 <M> Special RSVP classifier for IPv6
 [*] Traffic policing (needed for in/egress)

Save your configuration, recompile your kernel and modules, and re−install it. We are going to use the CBQ
packet scheduler to implement some queues to control bytes flow in our PC #1 NIC.

Personally I preferred the excellent HTB queueing discipline implementation by Martin Devera but actually
this implementation is not in standard Linux (but it will be); for implementing it you have to patch your
kernel before recompiling and it's better not to complicate things more. However I have to say that this queue
discipline is a lot more simple to use than CBQ happens to be. More information on HTB queueing
discipline are linked at the end of this document.

Having compiled and re−installed your kernel you have to install the iproute2 package that will be used to
run the commands needed to implement the queues. Download this package from ftp://ftp.inr.ac.ru/ip−routing.

I'm working with version 2.2.4−now−ss001007. To install it follow these instructions:

14. Controlling flows 39

ftp://ftp.inr.ac.ru/ip-routing

bash# cp iproute2−2.2.4−now−ss001007.tar.gz /usr/local/src
bash# tar xzvf iproute2−2.2.4−now−ss001007.tar.gz
bash# cd iproute2
bash# make

After make compiles the iproute2 package successfully the ip utility will be in iproute2/ip directory and
the tc utility in iproute2/tc directory. Copy both of them to /usr/bin directory:

bash# cp ip/ip /usr/bin
bash# cp tc/tc /usr/bin

Now, using the tc utility, we are going to create a CBQ queue in the interface eth0 of the PC #1 computer.
This queue will have 4 classes as children and each of these classes will be used to control the 4 flows from
192.168.1.1 to 192.168.1.2 through ports 1001 to 1004.

Write and run the following commands:

bash# tc qdisc add dev eth0 root handle 1:0 cbq bandwidth 10Mbit \
avpkt 1000 cell 8

This command creates the main (root) cbq queue 1:0 in the eth0 interface; the bandwidth of this queue is
10Mbit/sec corresponding to our Ethernet interface.

Now write and run:

bash# tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10Mbit \
rate 1000kbit prio 8 allot 1514 cell 8 maxburst 20 avpkt 1000 bounded

This command create the main cbq class 1:1. The rate of this class will be 1000kbit/sec.

Now we are going to create 4 classes ownned by this class; the classes will have rates of 100kbit, 200kbit,
300kbit and 400kbit respectively. Write and run these commands:

bash# tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10Mbit \
rate 100kbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000

bash# tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth 10Mbit \
rate 200kbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000

bash# tc class add dev eth0 parent 1:1 classid 1:5 cbq bandwidth 10Mbit \
rate 300kbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000

bash# tc class add dev eth0 parent 1:1 classid 1:6 cbq bandwidth 10Mbit \
rate 400kbit prio 5 allot 1514 cell 8 maxburst 20 avpkt 1000

Each of these classes will have a sfq queue discipline attached to them to dispatch their packets. Write and
run these commands:

bash# tc qdisc add dev eth0 parent 1:3 handle 30: sfq perturb 15
bash# tc qdisc add dev eth0 parent 1:4 handle 40: sfq perturb 15
bash# tc qdisc add dev eth0 parent 1:5 handle 50: sfq perturb 15
bash# tc qdisc add dev eth0 parent 1:6 handle 60: sfq perturb 15

Querying libiptc HOWTO

14. Controlling flows 40

These commands create 4 sfq queue disciplines, one for each class. sfq queue discipline is some kind of fair
controlling queue. It tries to give to each connection in an interface same oportunity to their packets to be
dispatched to at all.

Finally we are going to create filters to assign flows to ports 1001, 1002, 1003 and 1004 to classes 1:3, 1:4,
1:5 and 1:6 respectively. Write and run as follows:

bash# tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
dport 1001 0xffff flowid 1:3

bash# tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
dport 1002 0xffff flowid 1:4

bash# tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
dport 1003 0xffff flowid 1:5

bash# tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
dport 1004 0xffff flowid 1:6

After running all these commands, now check your bw meter (you must be running netcat listening at ports
1001 to 1004 in PC #2 and talking in PC #1 as was explained in previous chapter and bw running in current
−c mode). You will have something like this:

Current flow values ...
 1099.9k: 108.8k 196.5k 337.9k 456.8k
 1104.2k: 115.3k 184.9k 339.9k 464.1k
 1102.1k: 117.3k 174.7k 339.7k 470.5k
 1114.4k: 113.6k 191.7k 340.7k 468.4k
 1118.4k: 113.7k 194.3k 340.5k 469.9k

bw show us how flows are controlling using queue disciplines of the Linux kernel. As you see, CBQ queue
discipline is not a very precise queue but you more or less have a flow of approximately
1000=100+200+300+400 on interface eth0.

To step back, write and run as follows:

bash# tc qdisc del dev eth0 root handle 1:0 cbq

on PC #1, to delete the main (root) queue discipline and owned classes and filters.

bash# killall nc

on PC #2 and PC #1, to stop netcat.

bash# iptables −F
bash# iptables −X

on PC #1, to clear iptables rules and chains.

bash# Ctrl−C

on PC #1, tty1 to stop bw bandwidth meter.

Querying libiptc HOWTO

14. Controlling flows 41

15. Some interesting links
iptables−1.2.6 by Paul Russell. 1.
Linux netfilter Hacking HOWTO by Paul Russell. 2.
iproute2 by Alexey Kuznetsov. 3.
Advance routing Linux HOWTO. 4.
HTB queueing discipline implementation by Martin Devera. 5.
Linux−Advance Networking Overview by Saravanan Radhakrishnan. 6.
monitor.pl by Stef Coene. 7.
netcat by Hobbit. 8.

15. Some interesting links 42

http://netfilter.samba.org/
http://netfilter.samba.org/documentation/HOWTO/
http://www.linuxgrill.com/iproute2-toc.html
http://www.tldp.org/HOWTO/Adv-Routing-HOWTO.html
http://luxik.cdi.cz/~devik/qos/htb/htbtheory.htm
http://qos.ittc.ukans.edu/howto/howto.html
http://www.docum.org/
http://rr.sans.org/audit/netcat.php

16. About the author
Leonardo Balliache is a power electrical engineer that left high voltage lines, transformers and protection
relays in 1983 to dedicated full of his time to computer sciences.

He is the General Manager of OpalSoft, a venezuelan company dedicated to business packages software
development.

In 1989 he started learning Unix using Coherent operating system. After this he was interested in Linux and
specially in bandwidth bottleneck problems, bandwidth controlling, packet filtering and hierarching, Linux
QoS (Quality of Service), advanced routing, network protection, firewalling, private network connection
through the Internet and solving line and server load balancing problems.

His company will be opening a new area of business offering Linux QoS solution implementations in
Venezuela.

Married to Cielo, with 3 sons (Jose, Dario, Gustavo), he can be reached at leonardo@opalsoft.net. He is
working now (please be patient) to open a QoS Linux information site at http://opalsoft.net/qos/ to
interchange knowledge with people interested and to make his works in the Linux "best of all" operating
system available to the public.

April 30, 2002

Caracas, Venezuela

16. About the author 43

mailto:leonardo@opalsoft.net
http://opalsoft.net/qos/

	Table of Contents
	1. Legal Notice
	2. Translations
	3. Disclaimer
	4. Credits
	5. Objectives
	6. What is libiptc?
	7. How did I obtain this knowledge?
	8. Previous knowledge and system requirements
	9. Installing iptables + libiptc
	10. How to create your program(s)
	11. Functions to query libiptc
	11.1. iptc_init
	11.2. iptc_strerror
	11.3. iptc_first_chain
	11.4. iptc_next_chain
	11.5. iptc_is_chain
	11.6. iptc_builtin
	11.7. iptc_first_rule
	11.8. iptc_next_rule
	11.9. iptc_get_target
	11.10. iptc_get_policy
	11.11. iptc_read_counter

	12. Functions to modify firewalling rules and statistics
	12.1. iptc_commit
	12.2. iptc_insert_entry
	12.3. iptc_replace_entry
	12.4. iptc_append_entry
	12.5. iptc_delete_num_entry
	12.6. iptc_flush_entries
	12.7. iptc_zero_entries
	12.8. iptc_create_chain
	12.9. iptc_delete_chain
	12.10. iptc_rename_chain
	12.11. iptc_set_policy
	12.12. iptc_zero_counter
	12.13. iptc_set_counter

	13. Bandwidth meter
	14. Controlling flows
	15. Some interesting links
	16. About the author

